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4 PAUL NEVAI
1. FOREWORD

Declaring laconically that Géza Freud was interested in orthogonal
polynomials would be an understatement rivaled by proclaiming that the
Buckeyes are just another Big Ten football team or Mercedes is just one of
many means of transportation available for mankind. As a matter of fact,
approximately 88 items out of Freud’s 132 approximation theory-related
publications deal with orthogonal polynomials in one or another (possibly
somewhat loosely defined) sense, and at least 35 of those have their
primary 1980 AMS(MOS) Subject Classification given by 42C05. It is
much more than symbolic that the first (“Remainder Term in a Tauberian
Theorem, 17) and last (“On the Greatest Zero of an Orthogonal
Polynomial”) published papers by Freud (cf. items [Freud 1] and
[Freud 131] in Freud’s publication list in Volume 46 (January 1986) of
this Journal or [Fr 1] and [Fr 71] in the references for this paper) do not
just apply, discuss, treat, and review orthogonal polynomials but also con-
tain the seeds of what I call Freud’s seminal idea and contribution to the
general theory of orthogonal polynomials. Perhaps nobody would argue
that Freud was an orthogonal polynomialist in his heart even though he
made extensive contributions to all of approximation theory including
general, constructive, polynomial, rational and spline approximations,
interpolation and harmonic analysis. It is much less known, however, that
Freud had a Christoffel function syndrome (or fetish if you prefer), and this
is what I classify as his fundamental gift to orthogonal polynomials,
approximation theory, mathematics, and last but not least to my own
mathematics in which Christoffel functions have been nourished and
applied to a variety of problems. The rest of this paper in one or another
sense is an elaboration of this idea and justification of my claim as to the
significance of Christoffel functions as perceived and perfected by Géza
Freud.

2. THE THESIS

It was Freud who first truly understood the fundamental significance of
Christoffel functions, the way they permeate into various aspects of
orthogonal polynomials; he was the first to apply, utilize and exploit them
consciously to a variety of problems arising in orthogonal polynomials,
approximation theory and harmonic and numerical analysis. His efforts
resulted in (i) constructive and quantitative one-sided approximation by
polynomials leading to Tauberian theorems with remainder terms; (it)
demonstrating strong Cesaro summability of orthogonal Fourier expan-
sions of square integrable functions which eventually led to the formation
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of a new theory of weighted approximations on the whole real line; (iii)
improved asymptotics for orthogonal polynomials in the Szegé class; (iv)
proving deep and substantial convergence resuits for orthogonal Fourier
series, Hermite—Fejér and Lagrange interpolation processes and Gauss—
Jacobi quadrature sums; and (iv) initiating the development of a general
theory of orthogonal polynomials associated with measures on infinite
intervals. Needless to say, the above five subjects are wholly interrelated
and thus cannot be discussed and analyzed independently of each other.

One should be careful to avoid creating the false impression that, in fact,
it was Freud’s and only Freud’s work that was of crucial consequence in
the above-mentioned areas. As a matter of fact, it was not even in Freud’s
research that Christoffel functions first were shown to be so significant.
Apart from earlier work by P. L. Chebyshev, C. F. Gauss, C. G.J. Jacobi,
A. A. Markov, K. A. Posse, and T.J. Stieltjes on quadratures and the
moment problem, one can find frequent use of Christoffel functions in work
related to the uniqueness of the solution of the moment problem by N. 1.
Akhiezer, T. Carleman, H. Hamburger, M. G. Krein, and M. Riesz
Additional names and references will be mentioned at appropriate places in
this paper.

What distinguishes Freud from his predecessors is the systematic and
consistent nature of his efforts to put Christoffel functions to work for the
benefit of approximation theory and orthogonal polynomials.

Even the latter claim needs some clarification and explanation. Namely,
any carefully conducted study of Freud’s mathematical thinking and
creative procedures will undoubtedly reveal that he was driven towards
Christoffel functions under the influence of P. Erdos and P. Turan, whose
series of papers [ErTul ]-[ ErTu3] bear primary responsibility for Freud’s
mathematical heritage.

3. NOTATIONS

Let do be a finite positive Borel measure on the real line such that its
support, supp(da), is an infinite set, and all its moments, u, are finite, i.e.,

pn=f " da(t) <o, n=0,,1,2..
124

Then there is a unique system {p,}, n=0,1,2,.., of polynomials orthonor-
mal with respect to dx on the real line, ie., polynomials

Pux)=p.fda, x)=p,x"+ - - -, Vn="7.(do) >0, (3.1
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such that

j Pult) pu(t) de(t)=3,,,,,  mn=0,1,2,.. (3.2)
R

Define the Christoffel functions associated with do by

A (da, x)= ["Zl e x)|2] S oo (3.3)
&

=0

The Christoffel function 4,(dx) is closely related to the Cotes numbers
Ain = Apn(da), k=1,2,.., n, which appear in the Gauss—Jacobi quadrature
formula

%, Mxke) A= [ 1) () (34)

k=1
valid for all polynomials 7 of degree at most 2n — 1. Here and hereafter
Xpn =X (da), k=1, 2,..., n, denote the zeros of p,(dx) ordered by

X1y > Xon> 00 > X (3.5)

The connection between the Christoffel function A,(dx) and the Cotes
numbers A,,(da) is given by

Apnldot) = A, (dot, x,,(det)). (3.6)

We write the three-term recurrence formula satisfied by the orthogonal
polynomials (3.1) in the form

xpn(daa x)=an+lpn+1(da’ x)+bnpn(da9 x)+anpn71(da’ X), (37)

n=0, 1,.., where a,=a,(dx) and b, = b,(dx) are given by
Gy =1ufyeand b= p, (1) o) (38)
R

We will also need suitable notation to discuss orthogonal Fourier series
and Lagrange interpolation. For fe L,(dx), its orthogonal Fourier series
S(da, [} in the orthogonal polynomials p,(dx) is written as

oA

S(do, f)= 3 ¢ prlda). (3.9)

k=0
The nth partial sum of its Fourier series is

n-1

Sde, f)= 3. cx pilda) (3.10)

k=0
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and the Fourier coefficients ¢, = ¢.(du, f) are given by

cszR F(0)pilde, 1) da(t). (3.11)

Let us define the reproducing kernel function K, = K, (du) by

n—1

K, (do, x, t)=Y p.l(do, x) pi(da, 1), (3.12)
k

=0

which, by the Christoffel-Darboux formula, can be written as

d — d
K,,(da, X, t)z’ynflpn( X, X) pn—l(daa t—l—_fn—l( o, X) pn(daa [). (313)

n

In terms of K, formula (3.10) takes the form
S, (dw, £, x) =j f(t) K, (do, x, t) du(r). (3.14)
R

The Lagrange interpolating polynomial L (/)= L,(da, /) associated with
the function f is defined as the unique algebraic polynomial of degree at
most n— 1 which agress with f at the zeros of p,(dx); it can be represented
as

Lo(da, f,x)=Y f(xen) benld, ), (3.15)
k=1

where the fundamental polynomials of Lagrange interpolation /,,(dx) are
defined by

Palda, x)

Len(dat, x) = — .
“ ) pn(da’ xkn)(x - xkn)

(3.16)

In this paper we also consider orthogonal polynomials on the unit circle.
Let du be a finite positive Borel measure on the interval [0, 2z ] whose sup-
port is an infinite set. Then there is a unique system {¢,}, n=0, 1, 2,..., of
polynomials orthonormal with respect to du on the unit circle, ie.,
polynomials

ou(2) =@ ldu, ) =K, 2"+ -, K, =K, (du)>0, (3.17)

such that

2 I .
(27r)’1£) 0,(du, 2) o dp, 2) du(0) =5, z=e® mn=0,1,2,..(318)
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For orthogonal polynomials on the unit circle we define the Christoffel
functions w,(du) associated with du by

a),,(du,z)=|:nz o (du, 2)12:| . =12 (3.19)

k=0

In analogy with the real case, define the reproducing kernel function
K,=K,(dp) by

n—1
K(du, z,u)= Y. oldu, 2) o.ldp, u). (3.20)
k=0

It was proved by G. Szego (cf. [Fr31b, p. 196]) that the analogue of the
Christoffel-Darboux formula (3.13) is

(P:(dll, Z) (p: (dli, u) - (pn(d.u" Z) (Pn(dll, u)
1—Zu ’

K, (dy, z, u) = (3.21)

Here and in what follows, the »-transform of an nth-degree polynomial 77
is defined by

IT*(z)=z"I1(1/z), (3.22)

where the conjugation refers to taking the complex conjugates of the coef-
ficients of the polynomial /1. The monic orthogonal polynomials

D,(du, z)=x, '¢,(dp, ) (3.23)
satisfy the recurrence formula
&, (du, z)=zP,(du, z)+ D,(du, 0) DX (dy, z), n=0,1,. (3.24)

which turns out to be of fundamental significance in many problems related
to orthogonal polynomials on the unit circle (cf. [Sz2, p. 293]).

If g is a nonnegative measurable function in [0, 27 ] such that log ge L,,
then the Szegd function D(g) is defined by

2

—1 = +z it
D(g, z) =exp { (47) fo log gt)=——di(, u=e"|zl<1. (325)

Note that D(g, 0) can be defined even when log g is not integrable. Of
course, if ge L, then D(g, 0) does not vanish if and only if log geL,.
Moreover, if log ge L,, then D(g)e H, in the unit disk, D(g, z)#0 for
|z] <1, D(g, 0)>0,

lim D(g, re”) = D(g, e') (3.26)
r~l
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exists for almost every ¢ in [0, 27 and
|D(g, e")> = g(1) (3.27)

almost everywhere (cf. [Fr31b, Chap. 5; Sz2, Chap. 10]).

The symbol ~, as in 4 ~ B where 4 and B depend on some parameters,
is used to indicate that |4/B| and |B/A| are both bounded uniformly in the
given range of parameters.

The set of all algebraic polynomials of degree at most n is denoted by
P,. The symbols R and N are used to denote the set of real numbers and
positive integers, respectively.

4. JUSTIFICATION OF THE CLAIM

4.1. A Little Philosophy

The crux of the matter is the formula

A,(de, x)= min f \IT(1)1? da(r). (4.1.1)
o R

Let us verbalize some of the obvious consequences of (4.1.1). First of all,
the Christoffel function is a monotonic function of the measure, and thus,
information regarding Christoffel functions of majorizing measures
immediately yields similar information on Christoffel functions under con-
sideration. The other, equally evident fact is that a quantity originating
from orthogonal polynomials, that is, the reciprocal of the sum of the
squares of the moduli of orthogonal polynomials, is, in fact, equivalent to a
purely approximation theoretic quantity arising from best L,(dw)
approximations, and thus finding the Christoffel function asymptotically
can be achieved by nearly optimal L,(dx) approximations, which in prac-
tice boils down to finding suitable polynomials /7 to substitute in the
integral in (4.1.1). Formula (4.1.1) has been well known for many years,
and its applications can be found in papers by P. Erdos, J. Shohat, and
P. Turan (cf. [ErTul-ErTu3, Sho4, Sho6, Sho87]), whose influence on
Freud’s research should not be overlooked.

For Christoffel functions associated with polynomials orthogonal on the
unit circle, the formula analogous to (4.1.1) is given by

o,(du, z)= min (2n)—’f2”|n(u)|2du(z), u=e".  (412)
Ifjlfzu:iill °
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The point is that the Christoffel function and the corresponding minimizing
polynomial in (4.1.1) of some measures are well known. As a matter of fact,
the extremal polynomial I7=IT (dx) in (4.1.1) is always given by

I(t)= K, (do, x, t)/K,(da, x, x). (4.1.3)

For example, if du is the Chebyshev measure, that is, dx(¢) = v dt where
v()=(1—-2)""2(t| <1) and v(t)=0(l7j = 1), (4.14)
then

A0, x) '=nT =1+ Us, _»(x)/2], (4.1.5)

where U, is the Chebyshev polynomial of the second kind, and the
corresponding minimizing polynomial I7 in (4.1.2) has an equally simple
form (cf. [Fr3lb, p. 104]).

PART 1: ORTHOGONAL POLYNOMIALS ON
FINITE INTERVALS AND ON THE UNIT CIRCLE

4.2. One-Sided Approximations and
Tauberian Theorems with Remainder Terms

On the basis of the extremal property (4.1.1) and formula (4.1.5), it
becomes a matter of straightforward and routine calculations using stan-
dard techniques of approximation theory (cf. [Fr3lb, Sect. 3.3,
pp. 100-105]) to show that if w is defined by

w(x)=(—log x)*~ !, 0<x<1,a>0, (4.2.1)
then
Aa(w, x)=0(1/n) (42.2)
uniformly in [0, 1]. For given xe [0, 1], let I, be defined by
r(n=1 for O0<t<x and r(ty=0 for x<t<1. (42.3)

For given #, the well-known construction of A. A. Markov and T. J. Stielt-
jes provides two polynomials, » and R, of degree at most 2n — 2 such that

r)< T () <R(1), 0<t<l, (4.2.4)
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and
[ LR = r(1)] w(t) di = 1, (w, x) (4.2.5)

(cf. [Fr31b, p.27]), and by (4.2.2) we obtain that the rate of one-sided
L,(w) approximation of Heaviside’s function " is O(1/n).

The rest is history, and what I have sketched is how Freud obtained his
first Tauberian theorem with remainder term in [Frl]. The remaining
ingredients of this Tauberian theorem come from S. N. Bernstein [Bel]
(estimating coefficients of polynomials in terms of their L,-norm) and
J. Karamata [Ka], whose ingenious one-sided approximation arguments
in simplifying G. H. Hardy and J. E. Littlewood’s proof of an improvement
of Littlewood’s Tauberian theorem [Li] are by now classical. Here is
Freud’s result.

THEOREM 4.2.1 [Frl1]. Let t be a nondecreasing function on R*, and let f
be a nonnegative function on R*. Assume that the Lebesgue—Stieltjes integral

F(s) = fm £(¢) exp(—st) d(1) (4.2.6)

converges for all s >0, and that there exists a>0 such that
F(s)y=KI(a+ 1)s “[1+r(s)], $>0, 4.2.7)

where r(s) satisfies |r(s)|<R(s) with R», R(0)=0 and R(gs)<
exp(cq) R(s), ¢ independent of q and s. Then, for every b >0,

r £ £(1) de(t) = Ka(a + b) 'x***[1 + O(|log R(1/x)] )] (42.8)
0

as x — 00.

It is interesting to point out that, independently of Freud, two other
mathematicians (J. Korevaar [Kor] and A.G. Postnikov [Posl])
published results of a similar nature, and though their approach was also
via Karamata’s method, their results were somewhat weaker than Freud’s.
More about Tauberian theorems is discussed by T. Ganelius in [Gan3],
and one-sided approximation is touched upon by R. DeVore in his survey
[De]. Freud himself returned to both Tauberian theorems and one-sided
approximations in later papers (cf. [Fr4, Fr8, Fr10, Fr13, Frl4, FrGa,
FrSz1, FrSz2, FrNel, FrNe2, Fr50, Fr57, Fr58]). There are also two
monographs by T. Ganelius [Gar2] and A. G. Postnikov [Pos3] dealing
with Freud’s results and related topics.
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4.3. Convergence and Absolute Convergence of Orthogonal
Fourier Series and Lebesgue Functions

Let us pass on to the next topic, which consists of the role played by
Christoffel functions in the theory of convergence of orthogonal Fourier
series. Our first example deals with Christoffel functions and Lebesgue
functions. The latter are defined as the norms of the partial sum operators
S, (da) considered as mappings from one space of functions to another. If,
for instance, supp(da) is compact, say, a subset of [ —1, 1], then it is con-
venient to define the Lebesgue function @Q,(du, x) by

Q,(dx, x)= sup |S,(du, f, x)l, (4.3.1)
Ifle<t
where C= C[ —1, 1]. Lebesgue constants are defined as greatest values of
Lebesgue functions over a suitable domain. First applying Schwarz’
inequality and then Bessel’s inequality to S,(dx, f) in (3.10), one
immediately obtains

Q,(do, x) < A,(do, x) 72 {a[ =1, 1]}, (4.3.2)

and thus the Christoffel functions fundamental property (4.1.1) can again
be used to estimate Lebesgue functions, which, via Lebesgue’s inequality,
yields convergence results for orthogonal Fourier series of continuous
functions. For instance, if supp(dx)=[—1,1] and «'(x}=const v(x),
where v is the Chebyshev weight function (cf. (4.1.4)), then

Q,(da, x)= O(n'?) (4.3.3)

uniformly in [ —1, 1], and hence the corresponding orthogonal Fourier
series converges uniformly in [ —1, 1] for all lip 1 functions.

This standard argument has frequently been used by Erdés, Freud,
Natanson, Shohat, Turan, and others (cf. [ErTul-ErTu3; Fr31b, Chaps.
III-1V; Nat; Sho4; Sho6; Sho87]). Whiie there have been numerous
attempts to improve (4.3.3) under fairly restrictive conditions on the
measure da, and in particular, the estimate O(n'?) has been pushed down
to O(log n) by several authors (cf. [All, AL2, Fr31b, Sz6]), nevertheless ,
the first nontrivial improvement of the Lebesgue function estimate (4.3.3)
under sufficiently general conditions was not achieved until 1976 when I
succeeded in replacing O in (4.3.3) by o. The result I am referring to is
buried in the apocalyptic [Nel9, Theorems 8.8., 8.9, p.152], and its
improvement, below, has not been published before.

THEOREM 4.3.1 (Nevai). Assume supp(da)=[—1,1] and o'(x)>0
almost everywhere in [ —1,1]. If a is continuous at xe [ —1, 1], then

lim A,(d, x) Q,(dx, x)*=0. (43.4)
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If o is uniformly continuous on a closed set M =(—1,1), then (4.3.4) is
satisfied uniformly for x e M. If, in addition, log «'(cos 8) e L, then

im n='2Q,(du, x) =0 (4.3.5)

n— oG

almost everywhere in [ —1, 1]. Finally, if o is continuous and positive on an
interval A= [ —1, 1], then (4.3.5) holds uniformly on every closed subinterval

of A.

No matter how innocent Theorem 4.3.1 looks, it is as deep as anything
known at present on orthogonal polynomials. T will show later how the
proof consists of putting together a few building blocks created by the
younger generation (A.Maté, E. A. Rahmanov, V. Totik, and I) whose
depth surpasses everything previously known in the general theory of
orthogonal polynomials. What prevents me from proving this theorem
right now is my elaborate dialectic plan of creating suspense and expec-
tations which must culminate at the right moment. This climatic event will
take place in Section 4.14.

For absolute convergence of orthogonal Fourier series, Christoffel
functions are also an indispensable tool. Following S. N. Bernstein’s [Be2]
arguments for proving absolute convergence of trigonometric Fourier series
of Lipe(e>1) functions, one realizes that besides the requirements
regarding the function whose orthogonal Fourier series is under con-
sideration, the other ingredient is the assumption that

[nd,(da, x)] ' =0(1). (4.3.6)

Indeed, what one does is divide the orthogonal Fourier series into diadic
blocks, and then, by Schwarz’ inequality,

2m+1 2m+1 2m+1 1/2
5 |ckpk(da)|<{ Y lel? Y |pk(da,x)|2}
k=2"+1 k=2m4+1 k=2"4+1

oC m+i 1/2
<{ Y el Y |pk(da,x>|2}

k=2"+1 k=0

= Epu(dt, £, 2)[Asmri, ((da, x)] V2, (4.3.7)

where E,(da, £, 2) denotes the best L,(dx) approximation of the function f
whose orthogonal Fourier coefficients are c¢,. On the basis of (4.3.7) one
can easily produce and prove a number of theorems regarding absolute
convergence of orthogonal Fourier series (cf. Mityagin [Mit]). For
instance, Freud established the following

THEOREM 4.3.2 [Fr5). Let supp(de) = [ —1, 1] and suppose that (4.3.6)

640°48°1-2
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holds uniformly on a set # = [ —1, 1]. Then the orthogonal Fourier series
expansion of f€ Ly(da) in { p,(da)} converges uniformly and absolutely on
the set M provided that

118

Ellda, £,2Yk 2 < 00, (4.3.8)
1

k
and in particular, if feLip ¢ (e >1).

If the reader starts to think that one of the messages I try to convey is
that, in many problems of orthogonal polynomials, the boundedness of the
orthogonal polynomial system (which is self-evident for the trigonometric
system) can be replaced by boundedness in the sense of arithmetic means
(Cesaro boundedness), then my efforts and intentions are well understood.
I expect this to become even more convincing in the next section.

4.4 Strong Cesaro Summability of Orthogonal Series

This section is devoted to questions regarding Cesaro summability of
orthogonal series. It occupies a central position in Freud’s private universe
and it also yields a process for nearly best approximation which is of
crucial importance in approximation theory, in particular in the theory of
weighted polynomial approximations. Throughout this section we deal
with measures do whose support is compact; without loss of generality one
can assume that it lies in [ —1, 1].

Strong (C, 1) (ie., |C, 1]) summability of S(da, f, x) is defined by requir-
ing

lim n! Zn: |Si(da, f, x)— f(x)} =0. (44.1)

n— o

It was G. Alexits who first suggested investigating |C, 1| summability of
general orthogonal Fourier series in orthogonal polynomials. The first
significant achievement belongs to K. Tandori [Tal, Ta2]. Tandori
realized that T.Carleman’s [Cal] method of proving Hardy and Lit-
tlewood’s [HarLi] theorem (which generalizes Lebesgue’s theorem on
almost everywhere convergence of Fejér means (ie., (C, 1)-means) of
trigonometric Fourier series of integrable functions) can be adapted to the
more general setting of orthogonal Fourier series in orthogonal
polynomials. Tandori’s success was due to the fact that the reproducing
kernel function K, (dx) of (3.12), similarly to the Dirichlet kernel function
in trigonometric series, allows a closed representation in terms of the
Christoffel-Darboux formula (3.13). However, Tandori’s theorem on
strong Cesaro summability of orthogonal Fourier series in [Tal] makes
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the assumption that the associated orthogonal polynomials are uniformly
bounded in the interval where |C, 1| summability is expected to hold. Thus,
Tandori inadvertently struck out, whereas Freud’s ingenious observation
that Tandori’s proof (or for that matter, the original one of Carleman)
does not actually live and breathe on uniform boundedness of the
orthogonal polynomial system, but in fact needs only Cesaro boundedness
of the orthogonal polynomials (cf. (4.3.6)), gave Freud the walk of his
lifetime, putting him on first base with a bright chance of a grand slam
which did eventually materialize.

Let us take a close look at the way |C, 1| sums can be estimated. Let us
pick fe L,(dx) and xe(—1, 1), and let I, and E, be defined by

]n=[~1,l]m(x—1/n,x+1/n) and En:[—lal:]\ln (442)
Let kK <n. Then, by (3.14),

Selda, f,x)= | f(0) Ki(da, x. 1) do(r)

=f f(t) K (da, x, t)doc(t)+j S(t) K (da, x, t) da(t)

=S (de, f, x)+ SPdu, £, x), (44.3)

and one estimates the latter two terms individually. By Schwarz’ inequality,

S8,/ x)< [ Kol x, 0 dato) | 11001 d()
<] IKelda, x 01 da(0) | 1/(0)F ()
< IK(d 0 dao) | 1S i)

= Aofdn, x)"" [ 1f(0]* dace), (444)
Iy
and thus
w3 IS s x) < dntan ) | lf(t)lzda(t)]l/z. (445)
k=1 I

Now we estimate S{?’ in (4.4.3). For given f, n and x, let us define
F=F(f, n, x) by

F(t)y=f(t)/(x—t)forte E, and F(ty=0forxel, (4.46)
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Applying the Christoffel-Darboux formula (3.13) to (4.4.3), we obtain
SPda, f, x) = a, [ pi(da, x) ¢, ((do, F)— py_ (o, x) ci(da, F)], (4.4.7)

where a, =7y, _,/y, and c,(do, F) are the orthogonal Fourier coefficients of
F (cf. (3.1), (3.8), and (3.11)). Since

1
=T /i=| pei(dn ) pldn ) du() <1, (448)

i/2

s, oo <2 s PP | @49)

n 1/2 n
5 |pk(da,x)|2] { 5
—0 k=

k 0

and thus, by Bessel’s inequality,

nt ISP, £ ) <2Unky (e, )] [n—‘ [ \F(znzda(z)}m

k=1

(4.4.10)

The combination of inequalities (4.4.5) and (4.4.10) yields the desired
estimate

n=' Y |Si(da, f, x)|
k=1

<23/2[nx,,+1(da,x)]—”z[nj P da(e)+n" [ |F(z)|2doc(t)]m
1, —1
(4.4.11)

(cf. (4.4.6) for the definition of F), which is the bread and butter of all
results regarding strong Cesaro summability of orthogonal Fourier series in
orthogonal polynomials. What remains to be done is to estimate the two
integrals on the right-hand side of (4.4.11), and this can be accomplished
via real analysis under various conditions on f and dx without further
reference to orthogonal polynomials. As a matter of fact, these two
integrals are identical (modulo da) to those which arise in Lebesgue’s proof
of his theorem on almost everywhere convergence of arithmetic means of
trigonometric Fourier series, and thus one needs nothing but the notion of
Lebesgue points of do-integrable functions and the associated simpie
properties of such combined with the usual technique of integrating by
parts applied to the second integral on the right-hand side of (4.4.11). In
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what follows, I formulate two representative results by Freud and
G. Alexits and D. Kralik for measures with compact support.

THEOREM 4.4.1 [Fr2]. Let fe L,(do) and suppose that
(A, (dx, x)] ' =0(1) (4.4.12)

on a set M. Then, for (Lebesgue) almost every x € .#, we have

lim n=' Y |Sudy, f, x)— f(x)| =0. (4.4.13)
n— o k=1

THEOREM 4.4.2 [AlIKr]. Let f be bounded on an interval A containing the
support of do, and let (4.4.12) be satisfied at some xe A. If, for h -0, we
have a(x x h) —a(x)= O(|h|), then

n! i 1S, (da, f, x)| <const-sup | f(1)l, (4.4.14)
k=1

ted
uniformly for n=1,2,....

Naturally, every approximator’s immediate reaction to (4.4.14) is that,
then, the de la Vallée-Poussin sum

2n- 1

n' Y Sdda, f, x) (4.4.15)
k=n

converges to f with order E,(f) if f is continuous, where E,(f) is the best
approximation of f by polynomials of degree at most n — 1, and this obser-
vation makes investigation of |C, 1| sums so valuable in approximation
theory.

Two problems arising at this point are conditions for the validity of
(4.4.12) and the possibility of extending the results to measures with
unbounded support.

4.5. Asymptotics for Christoffel Functions

Here the discussion is centered on estimating Christoffel functions. As in
Section 4.4, we assume that supp(dx) = [ —1, 1]. T will not accompany the
reader through the mazes leading to the right estimates. Providing historic
perspective does not seem to be the right way of introducing the reader to
the wonderful world of Christoffel functions. Instead, I will present the con-
temporary state of affairs immediately by formulating the following two
results.
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THEOREM 4.5.1 [MaNel]. Ifloga’(cost)e L, then

e 'ma’(x)(1 — x?)? < lim inf nA,(da, x)

n-— oC

<lim sup nd, (da, x) =na'(x)(1 —x*)?  (4.5.1)

n— o

for almost every x in [ —1,1].

THEOREM 4.5.2 [Nel19]. Letloga'(cost)eL,, andlet Ac[—1,1] bea
given interval. If 1/a’ € L, [A4], then

lim nd,(da, x)=na'(x)(1 — x?)"? (4.5.2)

n— oo

for almost every xeAd. If xe(—1,1), a is absolutely continuous in a
neighborhood of x, and o' is continuous at x, then (4.5.2) holds. If o is
absolutely continuous in a neighborhood of 4 and o' is continuous and
positive in A, then (4.5.2) is satisfied uniformly for x e A.

Both of these theorems have their roots in the work of P.Erdos,
G. Freud, G. Geronimus, J. Shohat, G. Szegd, and P. Turan (cf. [ErTu3;
Frl1; Fr31a, b; Ger2; Sho4; Sho6; Sho8; Sz2; Sz4, Vol I, p.437]), and 1
find it rather amusing that it was A. Maté and I who finally discovered and
proved them. It is also worthwhile to point out that the proofs of both
theorems contain essential ingredients missed by all of the above pioneers.
In particular, prior to Theorem 4.5.1 the strongest result known regarding
(C, 1) boundedness of orthogonal polynomials was the following theorem
by G. Freud.

THEOREM 4.5.3 [Fr11]. Let o’satisfy
f" |/ (cos(t + h))/e(cos ) — 1| dt = O(| log || ™) (4.5.3)
0

as h -0, with some a> 1. Then

lim inf nA,(do, x) > 0; (4.54)
that is,
n—1
n 'Y | pilde, x)>=0(1), (4.5.5)
k=0

almost everywhere in [ —1,1].

This theorem was reproduced by Freud in [Fr3la,b] and by Ya.L.
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Geronimus in [Ger2]. Freud suspected that this condition (4.5.3) was
somewhat superfluous, and was willing to believe that (4.5.5) should hold
under the much less restrictive Szegd condition loga'(cost)e L.
Nevertheless, when in 1979 I showed him our Theorem 4.5.1 his first reac-
tion was disbelief in the proof. As it turned out, Freud himself had tried
very hard to prove it for about a quarter of a century, and thus he could
not imagine that there is a relatively short and simple proof of this
theorem. Although I will not and cannot give detailed proofs of these
theorems in a few pages, I can still provide the reader with some clues and
insight into the nature of the proofs.

One starts by introducing a sequence of positive operators G,(du)
defined by

G, (dy, f, x)=2,(de, x) J f()K,(da, x, t)? dalt) (4.5.6)

for fe L,(dx). These operators were thoroughly investigated in [Nel9,
Chap. 6.2]. Because of the Christoffel-Darboux formula (3.13), G,(dx)
looks similar to Fejér’s sum (i.e., the arithmetic mean of partial sums) of
trigonometric Fourier series. This similarity is much more than skin deep,
and I succeeded in proving the following result in [ Nel9, Theorem 6.2.27,

p. 887.

THEOREM 4.5.4 [Nel9]. Letloga'(cost)eL,, andlet Ac[—1,1] be a
given interval. Assume that do is absolutely continuous and o’ € Lip ¢ (¢ >0)
in a neighborhood of A. Let fe L (dx) and suppose that f is bounded in
[—1,1]\4. Then

lim G,(dw, f, x)= f(x) (4.5.7)

n— o

almost everywhere in A. If, in addition, f is continuous at x € A, then (4.5.7) is
satisfied, and if f is continuous in 4, then (4.5.7) holds uniformly in A.

Theorem 4.5.4 itself is based on Szegd’s theory and its refinements dis-
covered by Freud [Fr16] (cf. [Fr3ta, b]; [Ger2]). Now the point is that
for the measure in Theorem 4.5.4 one knows the asymptotic behavior of the
Christoffel functions. This was found by Ya.L. Geronimus [Ger2,
Theorem 5.7] and I formulate it as

THEOREM 4.5.5 [Ger2]. Let dx and A satisfy the conditions of
Theorem 4.5.4. Then

lim ni(dx, x) = no' (x)(1 — x>)'2, (4.5.8)

n— o

uniformly for xe A.
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The next ingredient for the proof of Theorem 4.5.2 is the following

THEOREM 4.5.6 [Nel9, p.26]. If do is supported in [ —1,1] and o' is
positive almost everywhere there, then

lim A,(do, x)/A, , (de, x)=1 (4.5.9)
and
lim A,(da, x) p,(da, x)>=0 (4.5.10)

for every xe [ —1, 1]. Moreover, (4.5.9) and (4.5.10) hold uniformly in every
closed subinterval of (—1,1).

A weaker version of Theorem 4.5.6, where the condition o’ >0 a.e. is
replaced by loga'(cos f)e L, and no uniform convergence in (4.5.10) is
claimed, was discovered by Geronimus [Ger2, Theorem 3.4]. The proof of
Theorems 4.5.4 and 4.5.6 is based on the following theorem of E.A.
Rahmanov, which I think is one of the fundamental results in creating
generalizations of Szegd’s theory of orthogonal polynomials.

THEOREM 4.5.7 [Rah4]. If supp(da)c[—1,1] and o' >0 ae in
[—1,1], then the recurrence coefficients a, and b, in the three-term
recurrence formula (3.7) satisfy

im a,=% and  lim b,=0. (4.5.11)

n— xc n-— o

Theorem 4.5.7 was originally stated in [Rahl]. In [MaNe2] it was
pointed out that the proof of (4.5.11) in [Rah1] contained a well-hidden
error since it referred to a result by Ya. L. Geronimus in [Sz3, p.376]
(cf. [Ger9]) which itself contained a misprint. In reaction to our paper
[MaNe2], Rahmanov gave a correct proof of (4.5.11) in [Rah4]. His
proof is rather tedious and long, and in [MaNeTo02] we succeeded in giv-
ing a shorter proof that we believe is simpler and illuminates better the
reasons that lie behind (4.5.11). Our proof is based on an important
integral inequality of A. N. Kolmogorov concerning conjugate functions
and on some simple identities involving orthogonal polynomiais.

The last building block in the proof of Theorem 4.5.2 is the following
proposition of mine which enables one to estimate ratios of Christoffel
functions associated with different measures in term of the operators G,
defined in (4.5.6).

THEOREM 4.5.8 [Nel9]. Let du and df be two positive Borel measures
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(for which orthogonal polynomials exist) on the real line, not necessarily with
compact support. Suppose that do. can be represented in terms of df as

da= gdp, (4.5.12)
where g(=0) e L(df). Then, for every polynomial P of degree m,

An(dat, X)
An—m(dB, x)

If R is a polynomial of degree M such that R’g '€ L,(dp), then

| P(x)|? <G, m(dp, gIP1% x), n>m.  (4513)

: o Palda, x)
R(x) G,y i(dB, g HRI% x) 'S ———.
RGP G sl g IR ) <5200

Proof of Theorem 4.5.8. This proof is so simple that I will reproduce it
here. By (4.1.1),

(4.5.14)

An(doty ) < | P(x)] 7% K,y _ (B, X, X) "zf |P(1)1 K,y _ (dP, x, 1)* da(t),
R
(4.5.15)
and thus, by (3.12) and (4.5.6), inequality (4.5.13) follows. To prove

(4.5.14) we pick an arbitrary polynomial I7 of degree n — 1. Then we have
1T(x) R(x) = f I11(1) R(1) K,y  s(dB, x, 1) dB(2), (4.5.16)
R

and applying Schwarz’ inequality, we obtain

16 RS [ 1P g(0)dB(0) | g(0)™ IRWE K, yld, x, 1) d(o),

(4.5.17)
which implies (4.5.14). ||

Using Theorems 4.5.4-4.5.8, the proof of Theorem 4.5.2 can be accom-
plished in a few lines.

Proof of Theorem 4.5.2. Let dx and A satisfy the conditions of
Theorem 4.5.2. Define dff and do by

df(ty=da(t)on [—1,11\4* and dp(t)=dton 4* (4.5.18)
and

do(t)=du(t)on [—1,1)\4* and do(t)=a'(t)dton 4%, (4.5.19)
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where 4* is a sufficiently close neighboorhood of 4. Then, by
Theorem 4.5.5,

lim nA(df, x)=np (x)(1 —x)"? (4.5.20)

uniformly for x € 4. Moreover,
do = g dp, (4.5.21)
where

g(t)=1lon[—1, L ]\4* and g()=0a'(t)on 4*. (4.522)

Thus, by Theorems 4.5.4 and 4.5.8 and formula (4.5.20), the asymptotic
formula

lim nd,(do, x)=no'(x)(1 — x?)? (4.5.23)

n— 0

holds either almost everywhere or pointwise or uniformly, depending on
the particular properties of do. If do # du, then passing from do to do is
accomplished via (4.1.1), which makes it possible to compare the
corresponding Christoffel functions. Namely, by (4.5.19),

do < du (4.5.24)
so that, by (4.1.1),
Au(do, x) < A, (du, x), (4.5.25)
and therefore, by (4.5.21),

lim inf nd,(do, x) > no'(x)(1 — x*)1? = o’ (x)(1 — x*)*  (4.5.26)

n— o
for almost every x € 4. ‘What remains to be shown is that

lim sup ni,,(da, x) < no’(x)(1 — x*)*? (4.5.27)

n— ©

for almost every x € 4 as well. Here again (4.1.1) helps us out. Let us define
I by

I1(t) = K, (v, x, 1)/K,(v, x, x), (4.5.28)
where v is the Chebyshev weight; that is,

o()=(1—2)""2 (jt|<1) and  o(t)=0 (j7| >1). (4.5.29)
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Then by (4.1.1)
1
ni(do, x) < nkK,(v, x, x) > j K, (v, x, t)* da(t). (4.5.30)
-1

The explicit expression for I7 in (4.5.28) is well known (cf. [Fr31b, p. 244])
and it is easy to see that

(1) = O(n) [ 1 + n*(x — 1)*] 1. (4.5.31)

Consequently, the right side of (4.5.30) behaves exactly as the Fejér sums of
trigonometric Fourier series of measures (cf. [Nel9, p. 31; Zyl, p. 105]).
Now, following Lebesgue’s arguments applied to (4.5.30), one immediately
obtains (4.5.27). This completes the proof of Theorem 4.5.2. ||

The next step is the proof of Theorem 4.5.1. Before proceeding with the
proof, I formulate the following

Conjecture 4.59. 1f log a’(cos t)e L, then
lim nl,(dw, x)=na'(x)(1 —x?)"2 (4.5.32)

n— o0
for almost every x.

A proof of this conjecture would bring to a natural climax investigations
which were started by Szegd approximately 70 years ago in connection
with Hankel forms [Sz4, Vol. I, p. 53] and equiconvergence of orthogonal
Fourier series [Sz4, Vol. 1, p. 437].

While in the proof of Theorem 4.5.2 the expert eye can recognize traces
of ideas originating with Erdos, Freud, Geronimus, and Turan (cf. [ErTu3,
Fr19b, Ger2], the proof of Theorem 4.5.1 is totally novel. This is not
unexpected since, earlier, authors did not investigate Christoffel functions
on the set of orthogonality under the sole condition that log a’(cos t)e L,.
As is frequently the case, if one is to prove a deep result for orthogonal
polynomials on the real line, then first one has to make a temporary trans-
ition to the unit circle and work within the framework of Szegd’s theory.
The two main ingredients in the proof of Theorem 4.5.1 are the following
two results. Throughout the rest of this section we deal with orthogonal
polynomials, measures and Szegd functions on the unit circle (cf. formulas

(3.17)=(3.27)).
THEOREM 4.5.10 [Sz2, p.297]. Iflogpu'eL,, then
lim ¢*(dy, z)=D(u',z)"! (4.5.33)

uniformly on compact subsets of the open unit disk.
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THEOREM 4.5.11 [MaNel]. Let P be a polynomial of degree n and let f
be analytic in an open set containing the closed unit disk. Then

P 102 < @+ mple(sm) [ 1P f Gl B, u=e®  (4534)

for every positive p, where z is an arbitrary point with |z|=1 and
r=np/(2+ np).

As a matter of fact, in the inequality given in [MaNel, Theorem 6,
p. 1487, |f|? rather than |f| appears, and thus it is apparently (but not
actually) weaker than (4.5.34). The latter can be established directly, in a
way similar to the way in which it was established in [MaNel], by using
the contour integral formula

(1-r*) g(r) = (mi) " |

I£1=

NI =ro)E = r)tdl,  (4535)

valid for g analytic in the closed unit disk, with g(z)=
(R,(s2)) f(sz) (s 7 1); here R, is a polynomial of degree n having no zeros
inside the unit disk such that |R,(z)P,(z) ' =1 for |z] =1 (see [MaNel,
p. 149]). Note that |(1—r{)({—r) ' =1 for [{|=1, which makes the
estimation of the integral on the right-hand side of (4.5.35) easy.

Instead of proving Theorem 4.5.1 in its entirety, I prove only the
statement regarding the limit inferior of the Christoffel function, and even
that part will be done for orthogonal polynomials on the unit circle. The
transition from the unit circle back to the interval [ —1, 1] is accomplished
via the inequality

Aolde, x) = nw,(dy, z),  x=cos 0, z=e" (4.5.36)
(cf. [MaNel, p. 152]), where du is the projection measure associated with
do by du(8) = da(cos 9).
THEOREM 4.5.12 [MaNel]. Iflogu'eL,, then

2¢ "' (0) <lim inf nw,(dy, ) (4.5.37)

n > OC
for almost every real 6.

Proof of Theorem 4.5.12. Let IT be a polynomial of degree n and let m
be an arbitrary integer greater than n. Since ¢*(du) has no zeros in the
closed unit disk [Fr31b, p. 198], we can apply inequality (4.5.34) with
p =2 to obtain
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1(e”)|? |9, *(dp, re®)| =2

2n
<en(47z)*‘_[0 TW)? @, (dw, w)| 2 dt,  u=e", (45.38)

where r=1—n"". The first m moments of the measure |¢,,*(dy, e”)| 2 dt
coincide with those of du(¢) [Fr31b, p. 198]. Therefore, since m>n, we
have

2n
() 10, (dpt ™) 2 <en(dn) [ @) du(e),  u=e
0
(4.5.39)

Now letting m — oo and using (4.5.33), we get

Iy 2" .
2¢= 1 |D(u', re®) 2 < M) 72 (2m) ! f [T()|? dp(2), u=e".
0
(4.5.40)
Since IT is an arbitrary polynomial of degree n— 1, we can conclude that

2e 1D, re®)|? < nw,(dy, ), (4.5.41)

where r=n"' Note that log|D(y, z)|* is the Poisson integral of

log u’ € L,. Hence

lim | D(u', pe”)|* = u'(6) (4.5.42)
pl

for almost every real 6. Therefore, as n — oo in (4.5.41), inequality (4.5.37)
follows and so does Theorem 4.5.12. |

I conclude this section by mentioning a generalization of Theorem 4.5.2
which 1 gave in [Nel9, Theorem 4.1.19, p.37, and Corollary 6.2.53,
p. 104]. It is one of my favorite results on pointwise convergence properties
of Christoffel functions..

THEOREM 4.5.13 [Nel9]). Let m>0 be a fixed integer, and let
Adc[—1,1] be a given interval. Let log a'(cos t)e L,. If 1/a’ e L,[A], then

n—1

im 0" Y pildt, x) Py mlde, x)
k=0

h—

=T, (x)[7a'(x)(1 —x?)"2]~! (4.5.43)

for almost every xe A, where T,(x)=cos(mt), x=cos t, denotes the mth
Chebyshev polynomial of the first kind.
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4.6. How Grenander and Rosenblatt and Geronimus Erred

In light of the relative freshness of the Christoffel function asymptotics
given by Theorems 4.5.1 and 4.5.2, the reader may well ask whether resuits
of comparable strength were available prior to 1976. The answer to this is a
straightforward yes and no. More accurately, there were some results which
are much more powerful than the above theorems, but unfortunately either
their statements or their proofs are false. Over the years 1 have had the
dubious honor of finding errors such as the one in [Rah1] (cf. [MaNe2];
and the two gems presented below form part of my valuable collection of
goofs by mathematicians par excellence.

The first one belongs to U. Grenander and M. Rosenblatt [GrRo], who
considered a generalization of the extremal problem (4.1.2) defining the
Christoffel function on the unit circle. This generalization amounts to
replacing the condiction I7(z)=1 by prescribing the value of the
polynomial /7 and its derivatives of given orders at several points. First
then find the explicit solution of this minimum problem in terms of deter-
minants involving the kernel function K, and its derivatives (cf. (3.20)) and
they succeed in obtaining asymptotics for these generalized Christoffel
functions when all the interpolation points are inside the open unit disk
(cf. [GrRo, Theorem 1, p. 113]). Then they consider the case where the
interpolation points are on the unit circle, and they formulate and “prove”
a statement [GrRo, Theorem 2, p.115] which seems to surpass
Theorem 4.5.2 significantly in several respects. Here I limit myself to giving
the following partial case of this statement which provides asymptotics for
the Christoffel functions ,,(dy, ).

Claim 4.6.1 [GrRo]. Let du be absolutely continuous and assume that
i’ is positive and continuous. Then

nw,(du, €)= p'(0) + 0(1/n) (4.6.1)

uniformly for all real 6.

When I first saw this paper | immediately knew that there was something
wrong, and it did not take long for me to catch the error in the proof.
However, it took me several years to convince myself that it was not just
the proof but also the statement which was wrong. I hope that by now the
reader agrees with me that a statement such as (4.6.1) cannot possibly be
true without imposing extra conditions on y’. Yes, my reader, you are
right: the asymptotic formula (4.6.1) is actually stronger than a special case
of Steklov’s conjecture, which I formulate as

o du, z)=0(1), n=1,2,., (4.6.2)
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uniformly for all z with |z| = 1, whenever the measure du is absolutely con-
tinuous, u’ is continuous and p'(#) > const > 0. (The original Steklov con-
jecture claims (4.6.2) for all absolutely continuous measures du for which
1'(8) = const >0.) Due to E. A. Rahmanov’s marvelous paper [Rah3], we
know that Steklov’s original conjecture is false, and thus Claim 4.6.1 of
Grenander and Rosenblatt is not likely to be correct either.

Where does the proof of (4.6.1) fail? The authors try to follow the road
paved by S.N. Bernstein and G. Szegé (cf. [Be3-Be5; Sz2, p.31; Sz4,
Vol. I, p. 69]) in that they first prove it when u' is the reciprocal of a
positive trigonometric polynomial, in which case it does indeed hold. Pass-
ing to the general case is accomplished by a one-sided approximation,
P<u' <R, of u by the reciprocals P, R of positive trigonometric
polynomials such that [P — R| <& The point is that by (4.1.2), w,(du, e®)
is between the corresponding Christoffel functions of P and R. So far
everything is fine. However, at this point the authors let ¢ » 0 and claim to
have completed the proof of the theorem (cf. [GrRo, p. 118, line 12 from
below]). We all know that &’s and O(1/n)’s do not mix well, and thus the
last line of the proof nullifies everything.

Apart from the unfortunate Theorem 2, Grenander and Rosenblatt’s
paper [GrRo] does possess intrinsic value. Those who are familar with my
research know that some of my favorite ideas originated from this paper.

The other error was made by Geronimus in [Ger5] and repeated in
[Ger6] (cf. [Su, p.23]). In these papers Geronimus attempts to prove.

Claim 4.6.2 [Ger5]. The asymptotic formula

lim nw,(dy, e?) = u'(6) (4.6.3)

n-— o

holds for almost every real 0, provided that du satisfies some extremely
weak conditions; in particular, g’ >0, a.c. would suffice.

It is my wishful thinking that this theorem of Geronimus is actually
correct, and I am in no position to prove otherwise. However, his proof
also relies on the “fact” that the order of taking limits can be interchanged,
and this is accomplished in a way which is very similar to the Grenan-
der—Rosenblatt argument or, for that matter, to Cauchy’s “proof” that the
limit of a convergent sequence of continuous functions is continuous.

In his attempt to prove (4.6.3), Geronimus considers the zeros of
K. (du, z, z,) where z,, |z4] =1, is a fixed point (cf. (3.20)). As shown by
Szegd [Sz2, p. 2927, all such zeros have modulus 1. Then Geronimus uses
arguments borrowed from P. P. Korovkin [Koro] and J. L. Walsh [Wa,
Sects. 7.3-7.4] to show that the asymptotic distribution of these zeros on
the unit circle is governed by a function called the Robin distribution
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function associated with du. (In case u' >0 a.e,, the Robin function is iden-
tically 6.) Afterwards Geronimus writes

nw,(du, €)= [A,(0 +¢)— A0 —¢)1/[B,(0 +¢)— B,(0—¢)], (464)

where ¢ > 0 is sufficiently small, and actually depends on n. For fixed £¢>0,
the expression [A4,(0+¢)— A,(0 —¢)]/[B.(0+¢)— B,(8 —¢)] converges as
n— o0, and the proof uses the above-mentioned zero distribution proper-
ties. However, in (4.6.4), ¢ depends on #n, and thus one cannot let n—
without making some additional assumptions on the measure.
Nevertheless, Geronimus lets n— oo in (4.6.4) (cf [Ger5, p. 1388, for-
mula (9); Ger6, p. 46, line 2 from below J).

The resulting falsely proved theorem was used by B.L. Golinskil in
[Goll] to “prove”

Claim 4.6.3 [Goll]. I g’ >0 almost everywhere, then
] 6+ 1/(2n)
o, (d, ) | du(t)<8n, n=1,2,., (4.6.5)

- 1/(2n)

uniformly for all real 0.

For other true and/or false results related to Geronimus’ [Ger$, Ger6], I
refer the reader to P.K. Suetin’s now obsolete survey paper [Su,
pp. 22-267, where a number of theorems of this nature are given.

4.7. Quadrature Sums and Christoffel Functions
By the Gauss-Jacobi quadrature formula (3.4),

S ) da= [ 1IG)1 dix) (47.1)
k=1 R

(cf. (3.5) and (3.6)) for all real polynomials II(x) of degree at most n— 1.
Naturally, we cannot expect to be able to extend (4.7.1) to

Y. TCxa)l? A= | G0N d) (472)

for p> 0 except when |I1{”? is a polynomial of degree at most n— 1. For-
tunately, it turns out that it is not (4.7.2) which is needed in several
problems related to orthogonal polynomials, quadratures and interpolation
but rather the inequality

i T(x40)1 7 ;t/mSKJR | H(x)|” dat(x) (4.7.3)

k=1
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for all (or possible some) p >0 and for all polynomials I7 of degree m,
where K is a constant depending on the measure, the exponent p and the
ratio m/n only.

It was R. Askey [As4, AsS5] who realized the importance of inequalities
of the type (4.7.3) when investigating weighted mean convergence of
Lagrange interpolation at zeros of Jacobi polynomials. In [As3, p. 533],
Askey posed the problem of proving (4.7.3) for various classes of measures.
One can trace the origin of inequalities of type (4.7.3) to J. Marcinkiewicz
[Mar], who used the analogue of such an inequality to prove the L, con-
vergence of trigonometric interpolation at equidistant points, for all p > 0.

While

im Y | f (i)l ” 2= [ 1/3)17 datx) (474)

nﬂook___l R

for all continuous functions f when, say, the support of the measure is a
compact set {cf. [Fr31b, p. 89]), it is obvious that the norm of the mapping
F: C* > R} defined by F(f)={f(x1,)}, k=1, 2,.., n, cannot be bounded
unless the measure is a finite union of » mass points. Here C* is the space
of continuous functions defined on the shortest interval containing the sup-
port of the measure with norm defined by the pth root of the integral in
(4.7.4), whereas RY¥ is the n-dimensional space where the norm is defined
by the pth root of the quadrature sum in (4.7.4). On the other hand, the
existence of an inequality of type (4.7.3) indicates that F restricted to some
finite-dimensional subspaces (i.e., polynomials of a suitable degree) is not
merely bounded (which is obvious) but also uniformly bounded in » An
application of (4.7.3.) is discussed in Section 4.8, where I say more about
Lagrange interpolation.

From 1974 through 1976, 1 worked on a number of problems related to
weighted mean convergence of Lagrange interpolation taken at zeros of
orthogonal polynomials, and one of the most resistant ones was Turan’s
problem which amounts to finding out whether there exist measures for
which one cannot push the convergence of Lagrange interpolation L,(dx, f)
beyond L,(da). In solving Turan’s problem, I encountered two problems.
The first one is, in some sense, the dual of (4.7.3) and consists of finding
lower bounds for

2 P 1 (doty xXn)1 7 A (4.7.5)

k=1

Clearly, when p=0 and p =2, the sum in (4.7.5) equals jda and 1, respec-
tively. Whether one can interpolate between 0 and 2 remains to be seen. It
is even more difficult to determine lower bounds for

Z |pn71(da’ xkn)|pj'km (476)

kel

640:4871-3



30 PAUL NEVAI

where I is a given set of indices k. The other problem pertains to the con-
tinuous analogue of the previous one and requires determining lower
bounds for

fim inf jR | p.(da, 1)]7 dB(1), (4.7.7)

where the measure df is or is not related to do.

These are the subjects I want to discuss here. As a warm-up exercise I
prove the following result, which was first published in [Nel9,
Theorem 7.31, p. 138]:

THEOREM 4.7.1 [Nel9]. Let dx be supported in [ —1,1] and let p=2.
Then for all nonnegative do-measurable functions w, we have

7 [ ()1 = 222 w(r) da(t)

<lim sup J | p.(da, £)]7 w(t) da(?). (4.7.8)

n— o R

Proof of Theorem 4.7.1. By the triangle inequality,
2/p
[ [ 10t 197wt o) |
R

n-1 2/0
<t L U 'Pk(d“’f)l”W(t)da(t)]/. (4.7.9)
k=0 R

The extremal property (4.1.1) satisfied by the Christoffel functions and
Theorem 4.5.1 imply

7=l (1) (1 — 2) "2 <lim inf =14, (det, 1) ™! (4.7.10)

n—oc

for almost every ¢ in [—1, 1] whenever supp(dx)<[—1, 1]. Thus, by
Fatou’s lemma, the theorem follows from inequalities (4.7.9) and
(4.7.10).

The usefulness of Theorem 4.7.1 lies in the possibility of concluding that
lim f | p.(da, £)]7 w(t) da(t) =0 (4.7.11)
n— o YR

implies w=0 almost everywhere, under fairly mild conditions on the
measure, p and w.
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Now I will elaborate on the quadrature sum estimate (4.7.3). There used
to be two ways of approaching the problem: the first was introduced by
Askey [Asd, As5], while the second was developed in [Nel6, Nel7, Nel9,
Ne26, Ne30]. If I had seven wishes to be met by a genie, one of them
would request the possibility of representing every polynomial /7 by means
of an integral operator

H(x)=jR () Q,(de, x, 1) dult), (4.7.12)

where @, is a nonnegative polynomial in x of degree at most 2n — 1. If we
had (4.7.12), then by Jensen’s inequality [PolySz, Voll, Sect. 2.1,
Problem 71],

H(x)|” < jR TP Q (da, x, t) da(t) (4.7.13)

would follow for all p > 1, and applying the Gauss—-Jacobt quadrature for-
mula (3.4) would immediately be obtained with K=1. It is too bad that
such genies do not exist, or do they? Moreover, it is evident that it is not
reasonable to expect representations of the form (4.7.12) without some
additional restrictions. For instance, the degree of the polynomial /7 may
not be arbitrary. At this point, the classical analyst hiding in us will say
“Ho, ho, ho!” There are a number of positive operators with polynomials
kernels; for instance, the arithmetic (Fejér) means o, of trigonometric
Fourier series do such a job in the trigonometric case. Then one should be
able to form the delayed (de la Vallée-Poussin) means V,,, that is,

V,=26,,—0,. (4.7.14)

These means are trigonometric polynomials of degree at most 2n — 1, and
they leave nth-degree trigonometric polynomials invariant. Moreover, and
this is the meat of the matter, the kernel of V, is the difference of two
positive kernels of degree at most 2n—1. Thus the feasibility of the
representation of all nth-degree polynomials /7 in the form

1(x)=| MO dx x. 1) = QF*(do x, )] dalt),  (47.15)

where Q¥ and Q}* are nonnegative polynomials of degree at most 2z — 1
satisfying

sup j [QX(da, x, 1) + Q**(da, x, 1)] da(t) < o0, (4.7.16)

nzl
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is no longer that remote. Naturally, if we have (4.7.15) and (4.7.16), we can
apply Jensen’s inequality and the Gauss—Jacobi quadrature formula to
(4.7.15) and then, by (4.7.16), we can estimate the quadrature sums involv-
ing the kernel functions.

This is exactly how Askey [As4, As5] reasoned while establishing the
first estimate of quadrature sums in terms of integrals.

THEOREM 4.7.2 [As5]. Let du=dn'*? be a Jacobi distribution in
[ —1, 1] with parameters a and b, and let p > 1. If a= b and either (i) a> —1
and bz —L or (ii)|la—j|<1+b and —1<b< —} for some j such that
2j=2,3,.., then

i | (x,,(dox))| ? Ak,,(da)<1<j \[I(x)|? da(x) (4.7.17)

for all polynomials IT of degree at most n— 1, where K= K(a, b, p).

It was this result of Askey which brought me to the problems discussed
here. My first goal was to extend (4.7.17) to all a> —1 and 6> —1. I did
not take long for me to realize that 1 lacked the necessary knowledge to go
along the path paved by Askey, which includes positivity results for con-
nection coefficients for hypergeometric functions, a subject I knew nothing
about in 1974. Hence I had two options to choose from: either I give up
the hope of proving anything of any value about quadrature sums or I take
a short cut. Well, retrospectively, I am happy that I chose the latter,
especially since, as it turned out later, my approach to proving (4.7.3) for
Jacobi polynomials actually yielded a general technique applicable in a
variety of situtations including generalized Jacobi poynomials, Hermite
polynomials, Laguerre polynomials and any other case where one has at
one’s disposal a suitable Markov-Bernstein inequality, that is, an
inequality relating one norm of the derivative of a polynomial to another
norm of the polynomial itself.

My method of proving inequalities of type (4.7.3) is based on Christoffel
functions, Markov-Stieltjes and Markov-Bernstein inequalities and
estimates of consecutive zeros of orthogonal polynomials. As an
illustration, I will show how my method works in the example of
Chebyshev weights where it is easiest to convey ideas, and then I will for-
mulate some of the general results obtained this way. This approach works
only for p=1.

Let dT denote the Chebyshev distribution, that is, d7'= v dt, where

v(t)y=(1—=£2)""2 (1< 1) and v()=0(f] =1). (4.7.18)
Then 4,,(dT)=n/n (cf. (4.1.5)), and thus (4.7.3) can be expressed as
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THEOREM 4.7.3 [Nel6]. Let p=1. Then, for 1€ P,,, the inequality

i [(x,)|7 < Knj [II(2)}” v(t) dt, x,,=cos((2k + 1) n/(2n)),

i (4.7.19)
holds where K=2n""+m(3p+1)n~"’
Proof of Theorem 4.7.3

We break the proof of (4.7.19) into two steps.

Step 1. We show that, for all p>0 and all polynomials /7 of degree at
most m,

max |H(x)|” <m(p+1)2 j \(1)|? v(t) dt (4.7.20)

jxf<1
Proof. Indeed, by (4.1.5),
AidT, x) " '<(2n—1)rn"'<n, (4.7.21)

and thus, by the extremal property (4.1.1),

max |RN(x)|2<Nj |Ry(1))2 0(1) dt (4.7.22)

Jx| <1

for every polynomial R, of degree at most N. Let d denote the least even
integer >p. Then IT%? is a polynomial of degree md/2 <m(p+1)/2, and
hence, by (4.7.22),

max |[(x)|“<m(p+1)2-! f |TT(1)|* v(¢) dt. (4.7.23)

Jxi <1

Consequently

max |n(x)|d<m(p+1)2~1j \IT(6)] 7+ ) o(1) dit
R

Jxf<1
sm(p+1)2-1f IH(t)I”v(t)dtnilaxIH(t)ld*", (4.7.24)
R frf<1

and now (4.7.20) follows directly. J

Step 2. We show that for all p>= 1 and for all polynomials I7 of degree
at most m,

n—1

Z |17(xk,,)f”<(2n7t’l+2mp)f1 [TI(2)]? v(t) dt. (4.7.25)
k=2 —1
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Proof. We start with observing

T 7 <017+ p [ 1T (@) vty dr (47.26)

Xk+1.n

for x,,;,<t<x,_ ,, Next, we use the Markov-Stieltjes inequalities
according to which

Anlder) < j “da(t),  k=2,3...n—1, (4.7.27)

Xk + Ln

for all measures do [Fr3ib, Sect. 1.5, pp. 26-33].By (4.7.26), (4.7.27) and
because A,,(dT)=mn/n (cf. (4.1.5)), we have

n—-1
S <2t [ m@r s drp Y [ 1m0 1T 0] d
k=2 -1 k=2"%k+1n
(4.7.28)
Hence
T e <2 [ oo die2p | o o d
(4.7.29)

By Holder’s inequality

[ et ar

l (p—1)p \ Up
S[ f_l [11(2)]* v(t) dt] [ J‘l \IT'(0)/o(2)] v(2) dt:l

(4.7.30)

The second integral on the right-hand side of (4.7.30) can be estimated by
Bernstein’s inequality in L, spaces [Zy2, p. 11 ], and we obtain

r \T(0)|P~ " |IT(t)| dt <m r {TT(1)]? v(t) dt. (4.7.31)

Now (4.7.25) follows from inequalities (4.7.29) and (4.7.31). ||

Now let us analyze the proof of Theorem 4.7.3. In Step 1 we essentially
established that

IH(xkn)I”ftanKf [ 11(x)|* do(x) (4.7.32)
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for k=1, 2,.., n; that is, at least for the individual terms on the left-hand
side of (4.7.3) we have the right inequality. This can be done for a
significantly wider class of measures via generalized Christoffel functions
A (da, p) defined in [Nel9, Chap. 6.3] as

A.(da, p, x)= min J [Tt )7 doft); (4.7.33)

ePy_
M(x)=1

they were studied there extensively for generalized Jacobi weights, which
we introduce shortly. In Step2 the essential ingredients were the
Markov-Stieltjes inequality [Fr31b, Sect. 1.5], accurate asymptotics for
the Christoffel functions and the distances between consecutive zeros of the
orthogonal polynomials, and Markov-Bernstein inequalities of the type

fl \IT(1)/o(1)|? de(t) < Km? f \[T(¢)|? dalt) (4.7.34)

(cf. (4.7.18) for v) valid for all polynomials 7€ P,,. Again, all this has been
worked out in [Nel9] and relevant papers such as [Nel6, Nel7, Ne2l,
Ne26, Ne30, and MaNel]. Inserting all this information into the skeleton
provided by the proof of Theorem 4.7.3, we obtain

THEOREM 4.7.4 [Nel9]. Let dx be a generalized Jacobi distribution, and
let p= 1. Then

n

) IU(xkn)l”lanK(mn“”rl)f [11(x)|” da(x) (4.7.35)

for every Il P, where K= K(du, p).

Here the measure dx is called a generalized Jacobi distribution if
supp(da)=[—1, 1] and dua(t) = w(t) dt, where

N

w(t) = g(t)(1 —1)" 1‘[ L=t (1407w —1<r<1, (47.36)

—l<ty<ty ;< -<t;<l, I''>~-1, k=0,1,.,M+1, and g*leL
in[—1,1].

At this point the reader must have observed that neither Askey’s nor my
method enables one to extend (4.7.3) to O <p< 1. In the first case, the
reason for this is that Jensen’s inequality works only with convex functions,
whereas in the second case p — 1 becomes negative when p <1, and thus
Hdélder’s inequality cannot be applied in (4.7.30). The extension to 0 <p <1
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was made in the recent paper [LuMaNe], where our Hegelian dialectics
led us back to (4.7.12) and then we took the courageous leap from the
impossible (4.7.12) to the very much possible (4.7.13) or, more accurately,
to

IH(x)ngKfR ()7 @ (dua, x, t) da(t), (4.7.37)

where K= K(dua, p). As before, for methodological reasons I limit myself to
discussing the case of the Chebyshev distribution d7T (cf. (4.7.18)).

THEOREM 4.7.5 [LuMaNe]. Let O0<p < o0. Then the inequality
| H(x)|” < K(1 +mn~") 4,(dT, x) f |I1(2)|” K, (dT, x, t)> dT(t)
R

=K(1+mn=")G,(dT,|M”, x), —1<x<l (47.38)

(cf. (4.5.6)), holds for every polynomial Il of degree at most m, where K
depends on p only.

Proof of Theorem 4.7.5. For a given p>0, let us choose an integer L
such that Lp>2. Then I1K,(dT, x,-)" is a polynomial of degree at most
m+nL, and thus, by (4.7.20),

max |I1(x) K,(dT, x, x)*|? < K(m + Ln) j |I(t) K. (dT, x, t)*|” dT(1).
Ixl<1 R

(4.7.39)
We have K,(dT, x, t)<2n/m and K, (dT, x, x}=zn/(2r) for all x and ¢ in
[—1,1] (cf (4.1.5) and [Fr31b, p. 104]). Since Lp > 2, we obtain

b max |11(x)|” < K(m +1Ln) j \II(1)|” | K, (dT, x, 1)|>* &0-2) 4T(1)
R

x| <1
< Kn**-(m+ Ln) J |[TI(1))” K (dT, x, t)*dT(t), (4.7.40)
R
that is,

max |[I1(x)|” < Kn '(mn~' +L)J [II(2)|? K,(dT, x, 1)* dT(t), (4.7.41)

x| <t

and thus, as A,(dT, x)=n/(2n) [Fr3lb, Theorem 3.3.4, p.105], the
theorem follows. ||
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Theorem 4.7.5 can easily be extended to generalized Jacobi distributions
defined by (4.7.36). For w given by (4.7.36), let us define w,, by

wo(t)=g(O)[(1 — )2+ 1/n ]P0 +!

M
x [T Clte=tl + Un][(1+ )2+ 1/n] P w01 1<,
k=1

(4.7.42)

On the basis of my results regarding Christoffel functions of generalized
Jacobi distributions [Nel9, Chap. 6.3], we can prove

THEOREM 4.7.6 [LuMaNe]. Let dx be a generalized Jacobi distribution
in the sense of (4.7.36), O<p< oo, L20, and let | be a positive integer.
Assume Y is an increasing, convex and nonnegative function on the positive
real line. Then for all polynomials I1 of degree at most In,

YU wa(x) < Cn =t ! fR V(G ?) | KT, x, )] dou2).
(4.7.43)
Here C, and C, are constants independent of n, x and II.

Theorem 4.7.6 not only enables one to prove (4.7.3) for generalized
Jacobi distributions, but also makes it possible to relate quadrature sums
to the Large Sieve of number theory (cf. [Mo, p. 548, and Theorem 3,
p- 559]). As a matter of fact, (4.7.43) provides a convenient means to
extend the Large Sieve to algebraic polynomials in weighted Lp spaces.

Recall that the Large Sieve is an inequality for trigonometric
polynomials S, of degree at most » which states that

SISt < 2n o7} [ iS00 (47.44)
k=1 0

whenever 0<t, <1, < <1t,<2rn and d=min{t,—1, 13— t5,,
bw = L1y 20— (1, — 1,)} > 0.

On the basis of the Large Sieve and Theorem 4.7.6, D.S. Lubinsky,
A. Maté, and I succeeded in applying purely L, techniques to prove.

THEOREM 4.7.7 [LuMaNe]. Let du be a generalized Jacobi distribution
in the sense of (4.7.36), 0 < p < co, and let | be a positive integer. Assume \ is
an increasing, convex and nonnegative function on the positive real line. Given

1<y, <y, 1< <y <1, (4.7.45)
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set §;=arccos y,€[0,n], j=1,2,.,m, and let =min{0,—0,, 6;—0,,...,
0,,—0,._1}>0. Then, for all polynomials II of degree at most In,

i YAy )I? wiy)<Ci{n+67"} L% Y(Co|IT(1)|7) do(t)  (4.7.46)

and

m

X Wy ") Ayld, y) < C {1+ (nd) ™'} JR Y(Col T(1)|7) dax(t).

(4.7.47)

Here C, and C, are constants independent of m, n, 6, IT and {y},
J=1,2,.., m. In particular, if m=n and y,= x,,(da), then (nd)~" is uniformly
bounded, and thus (4.7.47) takes the form

i WG A < C | GO datr). (47.48)

I will return to (4.7.3) for measures with unbounded support in
Section 4.19.

Now I proceed to discuss lower bounds for (4.7.5) and (4.7.6). Such
estimates were thoroughly investigated in [Nel9, Chap.9]. Naturally,
these problems are difficult only when we do not have lower bounds for the
individual terms | p,_(d, x.,)| 7 Ax,. For instance, for generalized Jacobi
distributions, 1 proved the following result in [Nel9, Theorem 6.3.28,
p. 120, and Theorem 9.31, p. 170].

THEOREM 4.7.8 [Nel9]. Let du be a generalized Jacobi distribution in
the sense of (4.7.36). Then

C, < ni,(da, x)/w,(x)< C,, —-1<x<1, (4.7.49)

for n=1,2,..., where the positive constants C, and C, do not depend on x and
n (cf. (4.7.42)). If, in addition, the modulus of continuity w of g in (4.7.36)
satisfies w(t)/te L, in [0, 1], then

C3 < w(xkn)(l - xin)*1/2 Pn- l(da, xkn)2 S C4’ k = 1’ 25'"’ n, (4750)

forn=1,2,.., where C; and C, are positive constants independent of k and n.

Theorem 4.7.8 immediately implies

THEOREM 4.7.9 [Nevai]. Let dx be a generalized Jacobi distribution in
the sense of (4.7.36) and assume that the modulus of continuity w of g in
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(4.7.36) satisfies w(t)/teL, in [0,1]). Let A be a fixed subinterval of
[—1,1]. Then
liminf ) |[p,_ ((det, x;n)1” A4 >0 (4.7.51)

xkne d

for every p>0.

The example of Hermite polynomials shows that, in general, neither
(4.7.5) nor (4.7.6) need be bounded away from 0. Moreover, for general
measures, the problem is so much more difficuit that, at the present time, it
has been only partially resolved. I proved the following rsult result in
[Nel9, Lemma 9.9, p. 159].

THEOREM 4.7.10 [Nel9]. Let dx be supported in [ —1, 1], and assume
that log o'(cos t) is integrable in [0, n]. Then

liminf Y |p, 1 (det, Xgn)| Agn = 7'2D(p, 0)/2, (4.7.52)

n— o k=1

where p(t)=a'(cos t) (cf- (3.25) for the definition of Szegd’s function D).

Proof of Theorem 4.7.10. Let n>1. By the Gauss—Jacobi quadrature
formula (3.4), we have

2n72=‘)'n7 l(da) Z Tn-l(xkn) Dn— l(da’ xkn) 'lkna (4753)

k=1

where T,_, denotes the Chebyshev polynomial of degree n—1 whose
leading coefficient is 2”2 and 7y, ,(da) denotes the leading coefficient of
the orthonormal polynomial p,_,(dx) {cf. (3.1)). By the real line variant of
Szeg6’s Theorem 4.11.1 (cf. [Sz2, Theorem 12.7.1, p. 309]),

lim y,_,(dx) 22~ "=n2D(p, 0)/2 (4.7.54)

n-—» o0

and thus the theorem follows since |T,(x)| <1 for —1<x<1. |

Regarding (4.7.6), which is crucial for solving Turan’s problem on
divergence of Lagrange interpolation L,(da, ) in spaces L, (da) for p>2, 1
can only prove the following

THEOREM 4.7.11 [Nel9]. Let dx be supported in [ —1, 1], and assume
that loga'(cost) is integrable in [0,n]). Then there exists a number
6 =0(du) >0 such that, if Q<[ —1, 1] is a union of a finite set of disjoint
intervals with total length |Q2| >2— 0, then

liminf 5 [p,_ i(do, Xpn)| Agw>O. (4.7.55)

n—®© Xkn€ Q2
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Proof of Theorem 4.7.11. Let ¢Q=[—1,1]\Q, and let 1, be the
characteristic function of ¢Q. We have

Z Ipnfl(da, xkn)' }'knz Z |pngl(da’ xkn)l ;Lkn

k=1 Xpn€ 82

+ Z 1c.Q(xkn)|pn—l(daa xkn)l lkn

k=1

(4.7.56)

and by Schwarz’ inequality and the Gauss—Jacobi quadrature formula
(34),

z |pn—1(da’ xkn)| j'kn< Z lpnﬂl(da’ xkn)| A‘kn
k=1

Xpn € 2

1 n 1/2
+l: '[ . da 2 1('Q(xkn)pn—1(da, xkn)2 j'kn]
- k=1
(4.7.57)

The function 1, is Riemann integrable in [—1,1], and thus, by
Theorem 3.2.3 in [Nel9, p. 17],

hm Z 1CQ(xkn) pn—l(da’ xkn)2 ikn=2ﬂ“1 J

n—vcokzl !

(1—1)"Y2dr. (4.7.58)
2
Applying Theorem 4.7.10, (4.7.57), and (4.7.58), we obtain

nl/ZD(p, 0)/2<11m lnf Z lpnfl(das xkn)‘ '{kn

N
n— o Xgn€ 2

1 1/2
+[ j do 27! j (1 1) dt] . (4759)
—1 2
Thus (4.7.55) holds if the Lebesgue measure of ¢Q is sufficiently small. ||

The last problem I discuss in this section concerns estimating (4.7.7). For
the trigonometric system, we have Fejér’s [Fe] theorem according to
which

. 2n B 2n 2n .
lim (27:)'le f(t)|s1nnt|”dt=(2n)*1j0 f(t)dt(Zn)'lL |sin #|7 dt

n— oo

(4.7.60)

for all p>0 [Zyl, Theorem 24.15, p.49]. For general orthogonal
polynomials it would be unrealistic to expect to be able to prove similar
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results at the present time since one cannot even handle L, boundedness of
such orthogonal polynomials for p > 2. Nevertheless, it turns out that a
very useful lower estimate can be given for (4.7.7) for a large class of
measures.

I started investigating such problems in [Nel9, Chap. 9], where a num-
ber of results were obtained, including Theorem 4.7.1. Recent advances in
generalizing and extending Szegd’s theory (cf Sections4.11 and 4.13),
however, have made it possible to surpass all previous results in this direc-
tion. The following theorem by A.Maté, V. Totik, and me [M&NeTo6,
Theorem 2] is a typical product of our extension of Szegd’s theory.

THEOREM 4.7.12 [MaNeTo6]. Let supp(da)=[—1,1], a'>0 almost
everywhere in [—1,1], and suppose O<p<oo. If g is a Lebesgue-
measurable function in [ —1, 17, then

1 1p
| [ soan o]

. 1/p
< 2max{(Up= 1120} jm inf[ J | g(¢) pa(de, 1)]” d’]
—1

n-~— oC

(4.7.61)

In particular, if

1 1/p
lim inf[ j lg(t) p.(da, 1)) dt] =0 (4.7.62)
n-— o —1

then g =0 almost everywhere.

I conclude this section by formulating one of the basic ingredients in the
proof of the previous theorem which itself is one of the loveliest results we
ever proved.

THEOREM 4.7.13 [MaNeTo6]. Let supp(da)=[—1,1], and let a' >0
almost everywhere in [ —1, 1]. For a given real number ¢ and a nonnegative
integer n, define the set B, ,(dx) by

B, (da)y={t: p(do, 1) &' (1)1 — %) P 2} (4.7.63)
Then, for every ¢>2/m,
lim |B,,(dx) =0, (4.7.64)

n— oo

where |E| denotes the Lebesgue measure of the set E. Moreover, (4.7.64) does
not necessarily hold for ¢ <2/m.
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In other words, the orthogonal polynomials are uniformly bounded in
measure, and the bound is exactly what one would expect. Naturally, by
Rahmanov’s theorem [Rah3], pointwise boundedness cannot be guaran-
teed by solely size conditions imposed on «'; Steklov’s conjecture fails to be
true.

4.8. Mean Convergence of Lagrange Interpolation

In this section we are concerned with necessary and/or sufficient con-
ditions for weighted mean convergence of Lagrange interpolation taken at
zeros of orthogonal polynomials associated with measures with compact
support. Throughout this section we assume that the support of the
measure dx is in [ —1, 1] and f is a real valued function in the same inter-
val. Recall that, for a given f, the Lagrange interpolating polynomial
L,(da, f) is defined to be the unique algebraic polynomial of degree at
most #— 1 which satisfies

L(do, f, X)) =f(Xe)s k=12, n, (4.8.1)

and it can be expressed as

Lo(da, £, ) =3 f(ten) linldlt, x), (482)

where the fundamental polynomials /,,(dx) are given by

paldo, x)
Lenldot, x) =-— )
: ( ) Pn (daa xkn)(x_ xkn)

k=1,2,.,n (48.3)

(cf. (3.15) and (3.16)). By the Gauss—Jacobi quadrature formula (3.4), we
can easily evaluate the L,(dx) norm of L,(dx, f) and we obtain

[ ILds, £, 0P dot) = 3 \Lfd frwn)l By (484)

thus L,(dx, /), as an operator from C to L,(dw), is certainly uniformly
bounded in n. This is the simple reason why Erdos and Turan’s [ErTul]
well-known L,(dx) convergence result holds:

THEOREM 4.8.1 [ErTul]. Let supp(da)c [—1,1]. Then

lim f |f(t)— L,(da, f, t)|* da(t)=0 (4.8.5)

n—w R

for every function f continuous in [ —1,17].
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In connection with (4.8.5), it is natural to ask whether one can obtain
conditions (in terms of p >0 and df) guaranteeing

Jim r ] |f(¢) = L,(da, £, 1)|” dp(2) =0 (4.8.6)

for all continuous f. Of course, we know that Erdds and E. Feldheim
[ErFe] proved (4.8.6) for all p >0 when both measures du and df are the
Chebyshev distribution d7T (cf. (4.7.18)). It is interesting that both Freud
and Turan agreed that the resolution of this problem is of primary
significance. Freud lists this as an unsolved problem No.1 in [Fr31b,
p. 273] whereas Turan discusses it in [Tu2, p. 186; Tud, pp. 31-34].

One of Turan’s favorite and frequently repeated problems was the
following one, last published in [ Tud, Problem VIII, p. 327.

PrOBLEM (Turan). Does there exist an absolutely continuous measure
da with support in [ —1, 1] such that for some continuous function f, we
have

1
lim supj 1f(1) — L (da, f, 1)|? da(t) = o0 (4.8.7)
1

for every p > 2?

Neither Turan nor Freud knew the answer to this problem. It was Askey
[As4] who gave the right answer (yes) and it was I who proved it in
[Ne34].

At this point I cannot resist the temptation to tell the following story.
When 1 first discussed my mathematical future with Turan in 1970, he told
me that if T ever wanted to prove significant results in approximation
theory and orthogonal polynomials, the most important thing was to study
Askey’s papers, especially the one dealing with mean convergence of
Lagrange interpolation [As4]. I consulted Freud, as well, regarding the
kind of studies and research I should undertake, and his advice was essen-
tially identical. Freud suggested that I investigate weighted L, convergence
of Lagrange interpolation, and he recommended that I get in touch with
Askey, who had the most promising results in this direction. I find it
touching that the well-known (somewhat tragic, somewhat comic) feud
between Freud and Turan notwithstanding, they had such similar
mathematical tastes. I listened to both of them, and this is how I started
drifting towards Askey, who in the long run became responsible to some
extent for my continued and deeply rooted interest in orthogonal
polynomials.

When I recently asked Askey how he came to believe that there are
weights such that (4.8.7) holds for every p> 2, he told me that when he
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proved L,(dx) convergence of Lagrange interpolation taken at zeros of
ultraspherical polynomials (cf. Theorem 4.8.5), he noticed that the
exponent p in (4.8.6) for which (4.8.6) is satisfied (with dff = du) is such that
p — 2 as the parameter in the ultraspherical weights tends to co. Thus he
concluded that if one picks a weight which is flatter than any of the
ultraspherical ones, then that weight certainly must satisfy the conditions in
Turan’s problem. An example of such a weight is given by the Pollaczek
weight (cf. (4.13.8)). What is wonderful about this reasoning is that it
actually works, though it took another person (me) and another 15 years
to prove it rigorously. As it turned out, the solution came step by step via
applications of the results discussed in Section4.7, above. Askey’s
philosophy is crystallized in the following theorem, which I proved in
(Ne34].

THEOREM 4.8.2 [Ne34]. Let supp(du)=[—1,1] and loga’(cos8)e L,
in [0,2n]. Let 1 < pg< o0 and u (=0)e L, in [ -1, 1]. Suppose that

1
f [/ (1)(1 = 12)"2] 72 u(t) dt = o (4.8.8)
—1
for every p> po. Then there exists a continuous function f such that

1

limsup [ |L,(dz, £, 1|7 u(t) dt = oo (4.89)
n-— oG -1

for every p> p,.

Although the proof of Theorem 4.8.2 is beyond the scope of this survey, I
will nevertheless elaborate on some of the details which are the main
building blocks in the proof.

Sketch of the Proof of Theorem 4.8.2

Step 1 [Nel9, Theorem 10.15, p. 180]. We show that if (4.8.8) holds
for a single p, then there is a continuous function f such that (4.8.9) is
satisfied. Our starting point is the following expression [Fr31lb, For-
mula (3.6.3), p. 114] for the fundamental polynomials in (4.8.3),

lenldor, X) = a,(dox) Ago(dot) p,, . (dty Xy,) Poldt, X)/(X — X)) (4.8.10)

(cf. (3.5)-(3.8) and (3.13)). By (4.8.10) and Theorem 4.7.11, if 4 is a suf-
ficiently small interval, then there is a continuous function f, such that
|/»l<1and

|L(da, f,, X)| 2 Ka,(do) |p,(do, X)|,  x€4, (4.8.11)
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where K is a positive constant independent of 4 and » (just take a suitable
sawtooth function). Hence

[ Kay(d2)1” [ |pa(de, 07 ult) d
<[ \Lda, £ 0017 ulr)

< sup 1 |L,(da, £, t)| 7 u(z) dt. (4.8.12)

Ifllest ¥ =1

By Rahmanov’s Theorem 4.5.7, the recurrence coefficients ,(dx) tend to 1
as n — o0. Thus by Theorem 4.7.12,

Kj [ (£)(1 = )21 72 u(t) dt

1
<liminf sup | |L,(du, f,0)” u(t) dt, (48.13)

"= flles1 -1

where K> 0 is independent of 4. By (4.8.8), there is an interval 4 such that
f [a/()(1— 22T~ P2 w(t) dt = o0, (4.8.14)
4

and therefore, by (4.8.13),

1
liminfsup . _ L L, (dw, £, 1)]7 u(t) di = o (4.8.15)

H— 0

Now the existence of a continuous function f such that (4.8.9) is satisfied
follows from the uniform boundedness principle. ||

Step 2. The existence of the omnipotent continuous function fin (4.8.9)
is guaranteed by the following technical proposition about sequences of
operators on families of Banach spaces [Ne34, Lemma].

THEOREM 4.8.3 [Ne34]. Let D be a Banach space with norm ||.| and let
{B,}, po< p< 0, be a collection of Banach spaces B, with norm ||.|| , such
that B,c B, for p>q and |b||,<|bll, if g<p and beB,. Let {L,},
n=1,2,., be a sequence of bounded linear operators defined on D with
values in B, such that

lim sup |L(/)l,=o (4.8.16)

sl PR

630 481-4
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Jfor every po< p< oo. Then there exists an f € D such that

lim sup ||L,(f)l, = (4.8.17)

n— o

Jor every po<p< 0. |

Theorem 4.8.2 goes beyond soution of Turan’s problem, which can be
obtained from the former by setting u = o’. I wish also to point out that one
can use Theorem 10.19 in [Nel9, p.182] to prove a variant of
Theorem 4.8.3 for L, spaces with 0<p<1, and that would extend
Theorem 4.8.2 for the case when 0 < p < oo, Applying Theorem 10.16 in
[Nel9, p. 181], one can produce versions of Theorem 4.8.2 where the con-
dition log o'(cos B) € L, is replaced by other requirements. It is also easy to
see that n— oo in (4.8.9) can be weakened to n; —» oo, where {n,} is any
given increasing sequence of positive integers.

Theorem 4.8.2 is a negative result for a wide class of measures. For wide
classes of projection operators, R. Nessel and his group obtained a number
of results of very general character (cf. [G6Ma2] and the references
therein). Now let us turn our attention to positive results regarding mean
convergence of Lagrange interpolation. Although it is not true that, in the
general case, (4.8.8) is necessary and sufficient for (4.8.9) (cf. [Ne30,
Theorem 7, p. 6967]), it turns out that if both u# and o' are Jacobi weights,
or generalized Jacobi weights, then (4.8.8) and (4.8.9) are indeed
equivalent. The first nontrivial results in this direction were discovered by
Askey [As4, As5], who revived an old idea of J. Marcinkiewicz [Mar]
which succeeds in reducing the proof of L, convergence of Lagrange inter-
polation to that of orthogonal Fourier series and, what is even more
amazing, accomplishes this via L, arguments. In what follows I briefly
elaborate on Askey’s method.

Let A denote the class of measures do for which there is a constant K >0
such that

Y )| Ay <K | 1T(6)] dit(x) (48.18)
k=1
whenever I7 is a polynomial of degree less than »n (cf. (4.7.3)).
I summarize Askey’s method in [As4] as

THEOREM 4.84. Let dee A and let df be absolutely continuous with
respect to do. Then, for every 1 < p < oo, we have

sup | |L,(da, f, )" dB(1) < K” sup f |S.(da, £, )17 dp(),

Iflcs1“R Iflcst "R

(4.8.19)
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where S, (do, [) denotes the partial sum of the orthogonal Fourier series of
the function f (cf. (3.10)) and K is the constant in (4.8.18).

Proof of Theorem 4.8.4. Since df is absolutely continuous with respect
to da, we can write dff = g do. Then

J, 1L, .17 dB(0)
= |, La(de, £, 0)sign L,(d, /)] 1L, (d, £, 017~ g(0) da(1)

=J L,(dw, f, 1) G(z) da(t), (4.8.20)

where
G(t)=[sign L,(duo, f, )] |L.(d, f, )7 " g(1). (4.8.21)

If we expand G in the orthogonal Fourier series S{(dx, G), then the partial
sums S,(du, G) satisfy

f (dw, f,1) G t)da(z)=j L(dy, f, 1) S,(dx, G, 1) da(r) (4.822)

since P,(dx) is orthogonal to all polynomials of lower degree, and the
degree of L,(du, f) is at most n — 1. Hence, by (4.8.20),

leLn(da,ﬁt)V’dﬂ(t) j (d, f,1) S, (d, G, 1) da(1).  (4.8.23)

The next step is to apply the Gauss—Jacobi quadrature formula (3.4) to the
right side of (4.8.23). Taking the interpolating property of L,(dx, f) into
consideration, we obtain

[ Lo(do, £, 017 dB(e)= 3. Ly(dt £, Xen) S, (dt, G, X40) b
R k

=1

i FXen) Soldt, G, x4) A

<lfle Z |Sa(dat, G, X0l Ak (4.8.24)

k=1

At this point we use (4.8.18). Since due A, we have

|| 1L S 017 dBOY< KISV | 1S,z G, 0] da(o). (4825)
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Let H be defined by
H(t)=sign S, (du, G, 1). (4.8.26)

Then we can repeat our previously applied arguments to conclude

j |S.(da, G, )| da(t) =j S (da, G, 1) H(t) do(t)

—f G(¢) S,(do, H, 1) da(t).  (4827)
Let g= p/(p—1). Then by Holder’s inequality,

f IS (da, G, )| da(t)
R

i/p

l/q
< [ J. 16801 5(0) da(z)] [ I, 1utde, 1,017 g0 da(r)]
(4.8.28)
and in view of (4.8.21), (4.8.25), and df = g da, we obtain

fR |Lu(da, £, )17 dB(t) < [KI fll 17 JR |Sq(de, H, 1)|” df(2).  (4.8.29)

Finally, we observe that H in (4.8.26) is piecewise continuous. Thus
(4.8.19) follows from (4.8.29). |

Theorem 4.7.7 tells us that generalized Jacobi distributions are in the
class A, and this is exactly one of the main reasons why we were interested
in estimates of quadrature sums of the form (4.7.3) in Section 4.7. The
message conveyed by Theorem 4.8.4 is that, for the class A, weighted mean
convergence of Lagrange interpolation follows from that of orthogonal
Fourier series. There is a fairly extensive literature dealing with the latter
problem (cf. [AsWal, Bal, Ba2, Mul-Mu3, Polll-Pol13, Win]). For
instance, one can use Theorems 4.7.7 and 4.8.4 and V. Badkov’s results in
[Bal] to prove the following convergence theorem for Lagrange inter-
polation at zeros of smooth generalized Jacobi distributions.

In this section the measure du is called a smooth generalized Jacobi dis-
tribution if supp(dx)=[—1, 1] and du(t) = w(r) dt, where

n

w(t)=g(t)(1 — )" ﬂ -t (1+ 0=, —1<t<1, (4.8.30)

with —l<¢,<t, < <n<l, IN>—-1, k=0,1,.,m+1. Here g
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satisfies g*¥'e L., in [—1, 1] and w(t)/te L;, where w is the modulus of
continuity of g. We will also say that u is a generalized Jacobi weight if u
can be written in the form of the right-hand side of (4.8.30) with g=1.

THEOREM 4.8.5 [Ne30]. Let du be a generalized smooth Jacobi dis-
tribution and let u be a generalized Jacobi weight. Let 0 < p < co. Then

1
lim j 1f(t) = L,(dw, £, 0)|” u(t) dt =0 (4.8.31)
n—oc vy _|
for every function f continuous on [ —1, 1] if and only if
1
j [ (1)(1 = )17 u(t) dt < 0. (4.8.32)
-1

Theorem 4.8.5 generalizes all results previously known on mean con-
vergence of Lagrange interpolation, including those of Erdos and Feldheim
[ErFe], Feldheim [Fell-Feld], Marcinkiewicz [Mar], and Askey [As4,
As5]. To some extent I consider this theorem a tribute to Askey, who in
the late sixties, being an unknown approximator (though by then he had
already earned a reputation in harmonic analysis), had the courage to
enter an area where well-established stars such as Freud and Turan failed
to resolve some of their own favorite problems and who came up with a
number of partially forgotten and partially fresh ideas which eventually led
to a conceptually splendid solution of the basic problems. In all fairness,
one should not forget to mention the influence of papers of J. Mar-
cinkiewicz on both Askey’s and my research.

One of the limitations of Askey’s orthogonal Fourier series method
described in Theorem 4.8.4 is that it requires knowledge of convergence of
orthogonal Fourier series in the same weighted L, space where the con-
vergence of Lagrange interpolation is studied. Since at the present time
nothing is known on convergence of orthogonal Fourier series in L, spaces
with arbitrary weights (measures), one is forced to search for other
approaches when considering convergence of Lagrange interpolation in L,
spaces with general weights and/or measures. In my paper [Ne30], I
demonstrated that by realizing that, in fact, Lagrange interpolation can be
looked at as a mapping from bounded functions into the appropriate
weighted L, space under consideration rather than as a mapping from L,
into L,, one can directly estimate and/or evaluate the norms without
referring to the relationship between Lagrange interpolation and
orthogonal Fourier series as expressed in Theorem 4.8.4. My new method
still requires that quadrature sums be handled in a proper way, but the
technique described in Section 4.7 is suitable for such a purpose.
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In [Ne30] I set the goal of finding necessary and sufficient conditions for
convergence of Lagrange interpolation based at zeros of generalized Jacobi
polynomials associated with smooth generalized Jacobi distributions in the
sense of (4.8.30) in L, spaces with general weights. As a matter of fact, 1
considered quasi-Lagrange interpolating polynomials which have the
property that they interpolate not just at the zeros of orthogonal
polynomials but also possibly at two more exceptional points and, at these
exceptional points all their derivatives up to a prescribed order vanish. It
turns out that although by doing so we might ruin convergence when
ordinary Lagrange interpolation does converge, nevertheless the quasi-
Lagrange interpolating polynomials will converge when ordinary Lagrange
interpolation does not. This phenomenon is described in the following
theorem, which is one of my all-time favorites.

THEOREM 4.8.6 [Ne30]). Let da be a generalized smooth Jacobi dis-
tribution in the sense of (4.8.30), 0 < p < 00, and let r and s be nonnegative
integers. Let u be a nonnegative function defined in [ —1,1] such that
ue(Llog* L), in [ —1,1] and u is positive on a set with positive Lebesgue
measure, and let v(x)=(1—x)""(14+x)"° Let L") duw, ) be the quasi-
Lagrange interpolating polynomial defined by

L& da, £, x) = f(Xgn), k=0,1,2,..,n+1, (4.8.33)

where, for k=1,2,.,n, the points x,, are the zeros of the associated
orthogonal polynomials, xo, =1, x,,, |, = —1 (if either r or s equals 0, then
k=0 or k=n+ 1, respectively, is omitted in (4.8.33)),

LU da, f,1)" =0, I=1,2,.,r—1, (4.8.34)
and
LU(da, f, —1)" =0, I=1,2,.,s—1. (4.8.35)
Then
|
lim f [LA(e) — L)(da, f, )] u(2)|? dr=0 {4.8.36)
n— oo v

for every function [ continuous on [ —1, 1] if and only if

f 2'(1)"2(1 — 1) p(1) dt < oo (4.8.37)

and

JI [o/(1)~Y2(1 — )~ u(1)]” dt < 0. (4.8.38)

Moreover, there exists a nonnegative function u such that ue L,\(Llog* L),
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in [—1,1] and conditions (4.8.37)-(4.8.38) do not imply weighted mean
convergence in (4.8.36) for every continuous function f.

I wish to point out that both Theorem 4.8.5 and Theorem 4.8.6 concern
L, convergence of interpolation for all 0< p< . For 0< p <1, none of
the ideas described above are applicable, and the convergence in this case is
taken care of via certain delicate inequalities involving integrals with dif-
ferent values of the exponent p. Contrary to one’s expectation, Nikolskii-
type inequalities cannot be used, and the actual inequalities applied are
rather of an ad hoc nature.

I conclude this section with the following quotation from Askey’s [As4,
p. 84, first paragraph]: “The lack of nice theorems for p =42 and p =4 (for
weighted mean convergence of orthogonal Fourier series in Laguerre
polynomials) suggests that there are only fairly weak results to be obtained
for Lagrange interpolation at the zeros of the Laguerre or Hermite
polynomials. Turan raised this question in [Tur2] and I, too, would like to
see some results on this question. However I am afraid that they will be
weaker than one might have suspected.” 1 will return to Lagrange inter-
polation at zeros of Laguerre and Hermite polynomials in Section 4.19.
Right now I merely inform the reader that the “weaker than one might
have suspected” convergence does actually take place in L, for all p> 1,
with an appropriate weight function. I hope Askey will forgive me for
pointing a finger at him. The point is that sometimes even one of the
greatest predictors might fall. Why? Well, the reason is that mean
convergence of Lagrange interpolation cannot be treated as a purely L,
problem. As a matter of fact, the game has to be played in L. equipped
with L, metric.

49. Zeros of Orthogonal Polynomials
and Eigenvalues of Toeplitz Matrices

Freud had a number of most interesting papers on zeros of orthogonal
polynomials dealing with the case where the corresponding measure is not
supported in a finite interval, and 1 will discuss these in 4.18. Searching
through his publication list and my memory, I could find only two papers
by Freud treating zeros of orthogonal polynomials associated with
measures whose support is compact. One of them is a joint work with
Erdds [ErFr], while the other [Fr7] concerns result of Erdos and Turan.
The first one is exciting and uses no Christoffel functions, whereas the
second is abundant with somewhat routine applications of Christoffel
functions. Besides this, he also had some tidbits scattered around in several
of his papers on Lagrange and Hermite—Fejér interpolation. Most of these
results are duly exposed in his book [Fr31a, b], and thus I am under no
pressure and/or obligation to review them here. Instead, I will talk about
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results missed by Freud which are of great importance and whose intimate
relation to Christoffel functions is much more than just a fleeting adven-
ture.

One of Erdés and Turan’s most celebrated results is the one on dis-
tribution of zeros of orthogonal polynomials.

THEOREM 4.9.1 [ErTu3]. Let the measure do satisfy supp(dx)=
{—1,17 and «' > 0 almost everywhere in [ —1,1]. Then

fim n~! Zn:f(xk,,(da))=7t*1jl O —2)""dr (49.1)

n-— 0 k=1

(cf. (3.5)) for very function f which is Riemann integrable in [ —1, 1].

Due to the importance of this theorem, there have been numerous papers
treating the limit formula (4.9.1) and its generalizations under various con-
ditions on the measure (cf. [ErFr, Korovl, Korov2, Ul2, Ul6, etc.]). As a
matter of fact, Szegd’s Strong Limit Theorem [GrSz; Sz4, Vol 3, p. 269]
regarding Toeplitz determinants is nothing but (4.9.1) with a super-
accurate remainder term. What I find incredible is that, for many years,
nobody even suspected that (4.9.1) is improvable to a great extent under
the sole condition that o’ > 0 almost everywhere in [ —1, 1].

In this section, we will say that the measure dx is in the class M if the
recurrence coefficients a,(dx) and b,(dw) in (3.7) satisfy

lim a,(dx)=1 and lim b,(dx)=0. (49.2)

n— 0 n— 0

The class M has been thoroughly studied in [Nel9]. For our purposes it is
enough to know that if dxe M then supp(da) is a compact set containing
[—1,1] and M is sufficiently large to be of significant interest. More
specifically, if supp(dt)=[—1,1] and o' >0 almost everywhere in
[—1,1], then dxeM (cf Theorem4.5.7 and the comments thereafter
regarding this fundamental result of Rahmanov).

According to the following theorem that I proved in [Ne24, Theorem 9,
p. 3471, zeros of orthogonal polynomials and Christoffel functions live and
thrive together in M.

THEOREM 4.9.2 [Ne24]. Let dueM. If f is twice continuously differen-
tiable in an interval A containing the support of do, then

lim [ Y. Sl [ £(6) 1o, z)‘da(z)]

n— oo k=1

=(2n)"* '[1 f(OA =" d— f(1)/4— f(—1)/4.  (49.3)
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The proof of (4.9.3) consists of two parts. First, one demonstrates that
the expression in the brackets on the left-hand side of (4.9.3) is a bounded
functional on the space of twice continuously differentiable functions on 4
with seminorm || f|| = max | f"(¢)|, t€ 4. This is fairly straightforward. The
second step is to verify (4.9.3) for a dense subset, say polynomials. The
latter uses all the machinery which was discovered in [Nel9].

Theorem 4.9.2 leads to the following generalization of Erdos and Turén’s
Theorem 4.9.1, which is another of my all-time favorites [Ne24,
Theorem 10, p. 3507.

THEOREM 4.9.3 [Ne24]. Let dueM. Then

im | 3 () =T s (a0 |
k=1

n— oo k=1
— jl A1 =12)12 g (4.9.4)
~1

for every function f which is continuously differentiable in A — supp(dx). In
particular, (4.9.4) is true if supplda)=[—1,1] and o' >0 almost
everywhere in [ —1,1].

Clearly, Theorem 4.9.1 is equivalent to (C,1)-summability of the
expression between the brackets in the left-hand side of (4.9.4).

Zeros of orthogonal polynomials are just eigenvalues of truncated Jacobi
matrices. If g is a real valued dx-measurable function and all the moments
of gdn are finite, then we can form the matrix T(g, do)= {a,},
k,j=0, 1,..., defined by

= jR pilds, t) py(du, 1) g(t) da(r). (49.5)

Such a matrix T(g, do) is called a Toeplitz matrix corresponding to do and
generated by g. For n=1, 2,..,, the truncated matrix T,(g, d) is defined by
T,(g dx)={ay}, kj=0,1,...,n—1. Since T,(g, dx) is symmetric, its eigen-
values A,,(g, dx), k=1, 2,.., n, are all real. If g(¢r)=1, then 4, (g, du) are
precisely the zeros of p,(dx).

It was Szeg6 [GrSz] who first investigated the eigenvalue distribution of
such Toeplitz matrices generated by continuous functions when the
measure do satisfies Szegd’s condition log «’(cos 8)e L, in [0, =]. It turns
out that both conditions on g and dx can be relaxed. This I first proved in
[Ne27] by analytic means, and later reproved jointly with Maté and Totik
in [MaNeTol ] by more conventional matrix-theoretical methods. It brings
me great pleasure that both proofs use Christoffel functions in a nontrivial
way. The result I am talking about is the following.
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THEOREM 4.9.4 [Ne27]. Let the measure dou be such that supp(da)=
[—1,1] and o’ > 0 almost everywhere in [ —1, 1. Assume that the Toeplitz
matrix T(g, du) is generated by a function g€ L (dx). Let G be a continuous
Sfunction in an interval containing the essential range of g. Then the eigen-
values A, (g, dx) of the truncated matrix T,(g, da) satisfy

lim n~' Zn: G(A.(g, doc))=n"fl Glg()(1—1*)" " dr. (49.6)

n-—- k=1 -1

The analytic proof of Theorem 4.9.4 is based on the following

THEOREM 4.9.5 [Ne27]. Let supp(da)=[—1,1] and o' >0 ae. in
[—1,1]. Suppose that fe L, in the square [ —1,1]x [ —1, 1] and satisfies

lim ¢! j+ (%, 1) — f(x, x)| dit =0 (4.9.7)

e—0 x

for almost every xe [ —1, 1. Then

lim n‘ljl jl K, (da, x, 1) f(x, ) dou(x) da(t)

n— oG - —

=g jl f(e, 001 =212 (49.8)

(cf. (3.12) regarding K,,).
I recommend that the reader compare this result with Theorem 4.5.4.

Proof of Theorem 49.4. First we notice that, by Lebesgue’s theorem,
the function f(x, 1) = G(g(t)) satisfies (4.9.7). Thus, since

[ Gg(x) K, x, x) da(x)

=Jl Jl G(g(1) K, (dx, x, 1)? dofx) do(t), (49.9)
191

The formula (4.9.6) will be proved if we can show the validity of

lim [n' i G(A,(,,)—n”f1 G(g(x)) K,,(da, x,x)da(x)]:O.
n—® k=1 -1
(4.9.10)

For every n, we take a system of orthogonal eigenvectors of 7,(g, d«), say,
e, = (€ €rise €xn_1), k=1,2,..,n, and we construct n polynomials
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Win = (eg, P (dn)), k=1,2,...,n where P,(du)=(po(dx), p(da),..
P._1(dn)). Tt is easy to see that these polynomials v/, satisfy

[ W) ) o) = b (49.11)
[ W) 0,0 0 i) = (g ) B, (49.12)

and
¥ WalX) Y1) = K (2, x, 1), (4.9.13)

In view of (4.9.13), we have

i G =n" [ Glel) K fdo, x, x) dotx)

Y [ 6~ Gl Y ds(x) =1 (49.14)
k=17

Now fix ¢>0 and choose ¢ > 0 such that |G(x)— G(y)| <¢ for |x — y| < 4.
Then we can write

n

1=n' Y | [G(As,) = G(g(x)] Yialx)? dox(x)

k=1"14m—glx)<d

n

+nt ) [G(As) ~ G(g(x) T Yan(x)? du(x) =1, + 1.

k=1"11kn - 8(X) =3
(4.9.15)
By the choice of J,

N <en! i J-l Wia(x) da(x)=e. (4.9.16)

We also have

<262 max |G] Y. [ [Min— g0 Yanlx)? di(x). (49.17)

k=1"—1

Using (4.9.11)-(4.9.13), we can evaluate the right-hand side of (4.9.17) and
obtain

1,1 <26 %r " max |G| [ Jl g(x)? K, (dx, x, x) da(x)— i Ain].

-1 k=1

(4.9.18)
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Since
1
K, (dw, x, x) =f K, (dw, x, t)? do(x) (4.9.19)
1
and

i Az, = Trace(T,(g, dx)?)
k=1
= r fl g(x) g(t) K, (do, x, 1)* do(x) dox(1),  (4.9.20)

we can rewrite (4.9.18) in the form

<2 max |61 [ | Lex)?— gt g(0)]

x K, (du, x, t)? da(x) do(r). (4.9.21)

Note that the function f(x, )= g(x) g(¢) satisfies (4.9.7). Therefore, by
(49.8), 1, >0 as n— co. Taking (4.9.15) and (4.9.16) into account, we get
limsup |l] <¢, as n—oo. Since &¢>0 is arbitrary, (4.9.10) follows
(cf. (4.9.14)), and so does the theorem. |

Because they are not directly related to orthogonal polynomials and
Christoffel functions, I have not discussed extensions of Szeg6’s results such
as problems associated with distribution of eigenvalues of Hermitian
integral operators and so forth (cf. [Lan, LanWi, Wil-Wi6, Wilf] and the
references therein). In Section 4.18, I will return to zeros of orthogonal
polynomiais where the case of infinite intervals will be examined.

4.10. Hermite—Fejér Interpolation and Derivatives
of Christoffel Functions

For given da, f and n, the Hermite-Fejér interpolation polynomial
H,(da, f) is the unique polynomial of degree at most 2n — 1 which satisfies
the conditions

H,(da, f, Xn(da)) = f(x,n(d2))  and  H,/(dw, f, x;,(da))=0
(4.10.1)

for k=1, 2,.., n, where x,,(do) are the zeros of the orthogonal polynomials
pa(dn) (cf. (3.5)). We can express H,(dx, f) in terms of the fundamental
polynomials of Lagrange interpolation /., (dx) (cf. (3.16)) as

H,(db, [, x)= Zn: S i) =20, (dot, X4 )(X = Xp0) ] Lin(dlt, x)% - (4.10.2)
k=1
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Let us compute [, (da, x,,). We have, by the trace invariance formula,

hinldot, x) 1= L (doty X)P A (do) ™! (4.10.3)

k=1

(see, e.g., [Fr31b, p. 25]), and, differentiating both sides, we obtain

An(do, x) A, (det, x) i 20 (de, x) 1, (doty x) Ay, (d) ™. (4.10.4)

Putting x = x,, leads to
Anldot, X 1) Apn(dot) ™' = =21, (dat, x,,,,). (4.10.5)
Substituting (4.10.5) into (4.10.2), we get

H,(db, f, x) = Z Sl + A(der) =1 B (dt, X1 )(x = Xi) ] Ly, )2,

k=1

(4.10.6)

This is Freud’s representation of the Hermite-Fejér interpolating
polynomials in terms of the Christoffel function [Fr9]. It turns out that
(4.10.6) is much more convenient to handle than the standard represen-
tation (4.10.2), which is sometimes written as

H,(du, f, x)

= i f(xkn)[l - p,(;(dd, xlm) P::(da’ xkn)—l(x—_xlm)] lkn(daa x)2~ (4107)

k=1

Naturally, when one investigates Hermite—Fejér interpolation based at
zeros of classical orthogonal polynomials such as Jacobi, Hermite, and
Laguerre polynomials, there is no dispute as to the usefulness of (4.10.7)
since the second-order differential equation satisfied by these polynomials
yields immediately a convenient expression for

pil;(da7 xkn) p;(da, xkn) = “21;<n(da’ xkn) (4108)

which enables one to proceed with suitable estimates leading to con-
vergence of these polynomials to f In the general case, however, we cannot
count on differential equations, or for that matter on anything such as
generating functions, integral representations or difference equations, and
thus one tries to avoid dealing with second derivaties of orthogonal
polynomials, especially since one can hardly negotiate the polynomials
themselves.

The realization that (4.10.5) and (4.10.6) hold should be counted as one
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of Freud’s seminal contibutions towards orthogonal polynomials whose
significance should not be underestimated.

As far as 1 am concerned, I do not believe that Hermite-Fejér inter-
polation deserves the popularity it has received in the past 60 years.
Although, for any practical purpose, there are endlessly many papers deal-
ing with convergence and/or divergence of Hermite-Fejér interpolation,
most of these papers are based upon elegant identities resulting from the
specific choice of interpolation nodes. Even when the nodes of interpolation
are chosen to be zeros of orthogonal polynomials, most of the published
research deals with classical orthogonal polynomials and pointwise con-
vergence and/or divergence. The only exception is given by four papers of
Freud [Fr9, Fr45, Frd6, Fr72], where he treats pointwise convergence of
Hermite-Fejér interpolation taken at zeros of general orthogonal
polynomial systems, and my recent joint papers with P. Vértesi [NeVél,
NeVé2], where we investigate weighted mean convergence of Hermite—Fe-
jér interpolation at the zeros of generalized Jacobi polynomials. I do have
another favored paper on Hermite-Fejér interpolation though, written by
P. Vertesi [Ve], where necessary and sufficient conditions are given for
convergence of Hermite—Fejér interpolation in terms of structural proper-
ties of functions and the behavior of the Hermite-Fejér interpolation
polynomials at two points.

Freud did not simply observe (4.10.6); in [Fr9] he actually worked out
a method for estimating the derivatives of the Christoffel functions. This
method is simple and straightforward, and it consists of estimating the
reciprocal of the Christoffel function with the aid of the extremum property
(4.1.1). Since A,(dx)"' is a polynomial of degree at most 2n— 2, one can
apply either Bernstein’s or Markov’s inequality to estimate [4,(dx) ']’
Now [A,(dx) '] = —A(dx)[L,(dx) *], and thus two-sided estimates of
A (dax)~" and upper estimates of [1,(dx) ']’ yield the required estimates
for A,(dx). No matter how unsophisticated this approach is, it provides
deep results. For example, in [Fr9, Theorem 1] Freud proved the follow-
ing

THEOREM 4.10.1 [F197]. Let du be absolutely continuous with support in
[—1,1]. Let w=0' be continuous and positive in [ —1, 1], and assume that,
in a subinterval [a, b] = (—1, 1), w satisfies the Dini—Lipschitz condition

w(t)—w(y)=o(llog|t—y|| "), a<t y<bh, (4.10.9)

whereas the sequence { p,(do, x)}, n=1, 2,..., is uniformly bounded in [a, b].
Let f be bounded in [ — 1, 1] and continuous at — ' and 1. If f is continuous
at x (a<x<b), then

lim H, (dw, f, x)=f(x). (4.10.10)
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If f is continuous in [a,b], then (4.10.10) holds uniformly on every fixed
closed subinterval of (a, b).

It is natural for the reader to wonder why it is necessary to assume, in
Theorem 4.10.1, that f is continuous at —1 and 1 when the action takes
place inside [a, b]. Well, the reason is that the above method of Freud
does not yield sufficiently sharp estimates for the derivatives i,(dx) of the
Christoffel function. As a matter of fact, in [ Fr9, formula (48)], Freud can
only prove

Al(de, x)=0(1), n=12,.., (4.10.11)

uniformly for —1 < x <1, if dx satisfies the conditions of the theorem, and
in order to be able to remove the requirement that /" be continuous at the
endpoints of [ —1, 1], one needs to show

A(do, x)=O(1/n)(1 —x2)~"2  n=1,2,., (4.10.12)

uniformly for —1+n"2<x<1t—n"2 It turns out that the latter needs
much more sophisticated arguments.

Another way of looking at 1,(dx) is based on (4.1.1) and amounts to
comparing the derivatives of Christoffel functions of two different measures
provided that we know how the two measures are related to each other.
Theorem 4.5.8 shows how to do this for the Christoffel functions, and thus
there should be no reason to expect that this would be impossible to
achieve for the derivatives of the Christoffel functions as well. The basic
idea is contained in the following theorem, which was proved in [NeVé2,
Lemma 1, p. 31].

THEOREM 4.10.2 [NeVé2]. Let A be a fixed interval. Let g be a positive
continuous function in A such that g is differentiable on some set D < A and
both sup |g'(x)| when xeD and sup |g(x)— g(t)— g (x)x—1)|(x—1)"?
when xeD and te A are finite. Let dx be supported in A and let df be
defined by

df = g do. (4.10.13)
Then

|g()[An(dB, x) 7' — [An(det, x) ']

<K Z [l px(de, x)| + | pilda, x) ], (4.10.14)

k=n—2

uniformly for xe D and n=1, 2,..., where K is a fixed constant.
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In other words, if one has sufficient information regarding
[A,(dx,x)"']), then one is able to say a fair amount regarding
[A,(dB, x)~']. The proof of Theorem 4.10.2 is based on the identity

g(x)[An(dp, x)~ '] — [A,(dot, x) 7'’

=2g'(x) L K, (dB, x, t)(x — t)[ 0K ,(du, x, t)/dx ] da(r)

+2 j K,(dB, x, )[OK,(da, x, 1)/0x]

x [g(x)—g(t)— g'(x)(x — 1) ] du(2), (4.10.15)

which can be proved by direct verification. Since one of my goals is to stay
at the conceptual level and not immerse myself in unpleasant com-
putations, I refrain from going into the details of proving Theorem 4.10.2
using (4.10.15). Instead, I point out that, using (4.10.14) with the Lebesgue
measure (i.c., with Legendre polynomials), one can easily prove (4.10.12),
which leads to the following result of S. S. Bonan.

THEOREM 4.10.3 [Bol]. Theorem 4.10.1 remains true for bounded
Sfunctions f which are not necessarily continuous at the endpoints of [ ~1, 1].

Seventeen years after publishing [Fr9], Freud returned to the problem
of convergence of Hermite-Fejér interpolation in [Fr46], which I consider
one of his masterpieces. As before, the main emphasis is on estimating the
derivative of the Christoffel functions. I do not know how, but he came up
with the wonderful idea that if a weight function (i.e., «’) is monotonic,
then so is the corresponding Christoffel function. More precisely, in [Fr46,
Lemma 1, p. 3087 Freud proves the following

THEOREM 4.10.4 [Frd46]). Let do be supported on the positive real line,
and suppose that it is absolutely continuous. If, for some realr, x'a'(x) is a
nonincreasing function, then x' '1,(dx, x), n=1,2,.., are all decreasing
Sunctions for x > 0.

Proof of Theorem 4.104. Let u>1. Then (ux) o'(ux)<x"o'(x) for
x € R so that

ap, < da, where S (x)=u"o'(ux). (4.10.15)
Thus by the extremal property (4.1.1),
A(dB,, x) < A, (dy, x). (4.10.16)
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It is a matter of simple computation to show that
AdB,, x)=u"""A,(du, ux), (4.10.17)
and thus the theorem follows from (4.10.16) and (4.10.17). |

Following standard practice, let us define the linear functions v,, by
Vinldot, xy=[1 =21, (dat, X, ) (x — X)) ], k=1,2,.,n (4.10.18)
Hence

H. (du, f, x)= Z F(Xpn) Vin(dot, X) 1 (det, x)?, (4.10.19)
k=1

and wether or not H, is a positive or bounded operator mostly depends on
the properties of the functions (4.10.18). Moreover, in view of the linearity
of the functions v,,(dx), their positivity needs to be checked only at
endpoints of the smallest interval containing the support of the measure do.
Freud’s identity (4.10.5) and Theorem 4.10.4 can be combined to prove the
following unexpectedly simple and charming result of Freud in [Fr46,
Lemma 2, p. 308].

THEOREM 4.10.5 [Frd6]. Let du be absolutely continuous with support in
[ =1, 1]. Assume that there are two numbers a and b such that (1 — x)* a'(x)
is nondecreasing and (1 + x)® a’(x) is nonincreasing. Then we have

Vuldoa, Y Zza and v, (de, —1)2b, k=1,2,...n (4.10.20)

foralln=1,2,..

Proof of Theorem 410.5. By Theorem 4.10.4, the function
(1 —x)*"'A,(da, x) increases in [—1,1] whereas (14 x)?7' 2 (dx, x)
decreases. By differentiation one obtains

14+ (1 —¢) Au(da, x) A, (do, x) "' 2 a (4.10.21)
and
1— (1 +¢t) A(do, x) A (do, x) "' 2 b (4.10.22)

for —1 <1< 1. Now (4.10.20) follows from (4.10.5). |

On the basis of Theorem 4.10.5, Freud [Fr46, Theorem 1, p. 3127 then
proves the following result, which is one of the very few genuinely first-rate
theorems on convergence of Hermite-Fejér interpolation.

THEOREM 4.10.6 [Frd6]. Let da be absolutely continuous with support in
[—1, 1]. Assume that there are two numbers a and b such that (1 — x)* a'(x)

640:48:1-5
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is nondecreasing and (1 + x)° «’(x) is nonincreasing. Let the function f be
bounded in [ —1, 1]. Then

lim H,(dx, f, x)=f(x) (4.10.23)

n— o

if fis continuous at x € (—1, 1), and (4.10.23) holds uniformly on any closed
subinterval of (—1, 1) where f is continuous.

Another gem is [Fr45], where Freud explains why Hermite-Fejér inter-
polation diverges for so many weight functions. Since no Christoffel
functions are involved in his short and conceptual proof, I will not discuss
that paper here.

This is what Freud did succeed in proving on Hermite-Fejér inter-
polation. The next question concerns what Freud did not do in relation to
this interpolation process. Besides not dealing with routine problems, he
completely missed weighted mean convergence of Hermite—Fejér inter-
polation, which is a natural question since

lim j H,(du, f, x) da(x) = j F(x) da(x) (4.10.24)

whenever, say, the measure has a compact support and the function f is
Riemann-Stieltjes integrable (cf. [Fr31b, p.89]). The latter holds, of
course, because (4.10.24) is equivalent to the convergence of the Gauss—
Jacobi quadrature process.

Another question is why Freud missed investigating weighted mean
convergence of Hermite-Fejér interpolation. For me the answer is clear: he
did not possess the tools necessary for such an investigation. As it turns
out, the tools come from Lagrange interpolation, and the connection is
given by the identity which we found in [NeVé2, formula (85), p. 551,

Ho(de, f,x)= 3 f(xen) linldlot, x)°

k=1 -~

+a, p,(da, x) L,(do, fA,(dx) p, _(dx), x), (4.10.26)

where a, is the recurrence coefficient in (3.8). Naturally, the expert eye will
immediately realize that this identity is a simple consequence of Freud’s
formula (4.10.5) and other identities involving orthogonal polynomials and
Lagrange interpolation (cf. [Fr31b, Chap. 1]).

For mean convergence of Lagrange interpolation Cn L,(de) is the
natural space (cf. Erdés and Turan’s [ErTul]), and therefore formula
(4.10.26) suggests that for Hermite—Fejér interpolation C ~ L (dx) is the
right setting, if such a space exists at all. The other message in (4.10.26) is
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that investigation of Lagrange interpolation and derivatives of Christoffei
functions together (cf Theorem 4.10.2) will necessarily lead to the right
results regarding mean convergence of Hermite—Fejér interpolation. This
philosophy was carried out in [NeVé2], where we systematically studied
such problems for generalized Jacobi weight functions.

In this section, we define generalized Jacobi weights as follows. Let g be
a positive continuous function in [ —1, 1] such that g’e Lip 1. If w can be
expressed in the form

w(x) = g(x)(1 —x)* (1 +x)°, —I<x<l, (4.10.27)

where a> —1, b> —1, then w is a smooth generalized Jacobi weight. A
typical result is the following

THEOREM 4.10.7 [NeVeé2]. Let du be absolutely continuous with support
in [—1,17, and let &’ be a smooth generalized Jacobi weight. Let p >0, and
let u and v be two Jacobi weight functions. Then

lim fl|fm)—fhumhﬁtﬂpu0)dn=0 (4.10.28)

for every continuous function f satisfying

[ f(x)] < const v(x), —-1<x<1, (4.10.29)
if and only if

f (1) 7 u(t) di < . (4.10.30)

I conclude this section with a confession: it was Freud’s representation
(4.10.6) of the Hermite-Fejér interpolating polynomials in terms of the
Christoffel function which led me to the idea of investigating Christoffel
functions via the G, (dx) operators defined by (4.5.6), and thus, in one sense
or another, Freud is indirectly responsible for many of the results he did
not prove himself. Let me elaborate on this. In [Nel9, p. 57] I recommen-
ded rewriting (4.10.6) as

H, (dua, f, x)

™M=

Sn) [ Al der) + A (Aot X1, )(X — X )] i, X)7 Aey(dt) =

k=1

(4.10.31)

The expression in brackets on the right-hand side is the linear Taylor
approximation of 4,(du, x). If we replace the expression in brackets by the
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Christoffel function, then we end up with a positive operator, say F,(du),
defined by

F (da, f, x)=A,(do, x) i F(Xin) Lin(dot, X)? Ap(dor) . (4.10.32)

It is easy to see that these rational functions also satisfy the interpolation
property

F (da, f, Xi,(da)) = f(x,(da)) and F(dua, f, x;,(d0))=0, (4.10.33)

and thus their behavior will be predictable, to say the least. I introduced
this sequence of operators in [Nel9], where it enabled me to start
investigations of what we now call generalized Szegd theory (cf. Sec-
tion 4.13). Moreover, using the well-known formula

Lea(doy, x) = A, (de) K (do, x4,) (4.10.34)
(cf. [Fr31b, formula (1.4.6), p. 25]), we can write (4.10.32) as

F(do, f, x)= 4,(da, x) Xn: Ain ) f (X i) Koty X4)?,  (4.10.35)

which is the Gauss—Jacobi quadrature sum for G,(d«) defined by (4.5.6).
This is how I came to introduce the operators G, (da).

4.11. Szegd’s Theory via Christoffel Functions

Szego’s theory concerns the behavior of complex orthogonal polynomials
off the unit circle. It was first developed by Szegé [Sz4, Vol. 1, pp. 69, 111;
Sz4, Vol. 1, p. 475] and S. N. Bernstein [Be3, Be4], and it was further
enhanced, first by N. I. Akhiezer [Ak3], A. N. Kolmogorov [Ko], M. G.
Krein [Krel] and V.I. Smirnov [Sm], and then by Freud [Fr16, Fr17,
Fr3la, b] and Geronimus [Ger2-Ger4]. The first significant simplification
in solving Szegd’s extremal problem (to be described shortly) was presen-
ted by him in [GrSz]. Besides [ GrSz] the most popular book dealing with
Szegd’s theory is Freud’s book [Fr31a, b], which devotes an entire chapter
(Chap. 5) to Szegd’s theory (a phrase coined by Freud). Ome of the
unexpected fringe benefits of my recent work with Atti Maté and Vili Totik
on extensions of Szegd’s theory (which is valid under the assumption that
logu’eL;) to the case when u' >0 almost everywhere was that the
possibility of proving Szegd’s results via considerations arising from the use
of Christoffel functions emerged. This approach turns out to be simpler and
more goal oriented than any other known attempt.
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Szego’s (generalized) extremal problem consists of finding

wl(dy, z)= lim w,(dy, z), lz] <1 (4.11.1)

n— oo

(o(du, z)= (2n) ' u{z} for |z|=1, and w(du,z)=0 for |z|>1, which
easily follows from the theory of moments, where u{z} denotes the
du-measure of the point z (cf. [Ak47)), and where the Christoffel function
w,(dr) is defined by (3.19). For certain absolutely continuous measures,
(4.11.1) was found by Szegd in [Sz4, Vol. I, p. 54] whereas the general case
was treated by Kolmogorov [Ko], Krein [Krel ], and Smirnov [Sm]. The
final touches on (4.11.1) were put on again by Szegd in [GrSz]. It was also
Kolmogorov who associated Szegd’s extremal problem with completeness
of polynomials in L,(du), and the latter turned out to be of crucial con-
sequence in prediction theory. In what follows I describe the main results in
Szegd’s theory and also show how Christoffel functions can be used to
prove them in an unexpectedly simple fashion.

THEOREM 4.11.1 [GrSz]. For any measure du on the unit circle,

w(dy, z)=(1—|z]?) |D(, 2)1%, |z <L (4.11.2)

Naturally, by Dini’s theorem, the convergence in (4.11.1) is uniform on
compact subsets of the open unit disk. The following measure-theoretic
result enables one to reduce solution of problems such as (4.11.1) to
solving them for absolutely continuous measures only. It was proved in
[MaNeTo2], and it is an extension of a result of S. Kakutani (cf. [GrSz,
Theorem 1.4]).

THEOREM 4.11.2 [MaNeTo2]. Let v be a finite positive Borel measure
that is singular with respect to Lebesgue measure. Then there is a sequence
{h,},n=1,2,.., of continuous functions on the real line such that

O0<h,(x)<1 (4.11.3)
Jfor all x,
nlin{l)O h,(x)=1 (4.114)
almost everywhere and
lim fR h, (1) dv(t)=0. (4.11.5)

If v is confined to a finite interval and T > 0, then we may take each h, to be
periodic, with period T.
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Proof of Theorem 4.11.1. First assume that logu’'e L, Let |z] <.
According to (4.1.2),

w,(dy, z)= min (2m)~! r" |(u)]* du(t), u=e". (4.11.6)

€EPn_y
Iiz)=1

It is fairly evident that on the right-hand side of (4.11.6) it is sufficient to
consider such polynomials /7 which fo not vanish in the open unit disk
(cf. [G1Sz, p.40]). Let I7 be such a polynomial of degree n— 1. Then the
Szeg6 function D(y' |11|?) is in H, (cf. (3.25)), and thus, applying Schwarz’
inequality to the Taylor expansion of D(u’'IT), we obtain

2n
|D(u' |2, 2)> < (1—z%) ' (2m) ! J |D(WIT, u)|*dt,  u=e".
0
(4.11.7)
We have |D(|I1\? z)| = |I1(z)| since IT# 0 in the open unit disk, and thus,
by (3.25), (3.27), and (4.11.7),
2n i
D', 2)12 < (1 —121%) ! [T(z)| 7% (2m) ! L (w)|? du(t),  u=e",
(4.11.8)
from which
w,(du, )= (1 —121%) |D(, 2)%, |zl <1, (4.11.9)
follows immediately. Since {w,(du, z)} is a decreasing sequence, (4.11.1)
obviously exists, and, passing to the limit in (4.11.9), we obtain
w(dy, z) = (1 —|z1?) D', )%, |zl < L. (4.11.10)

Now we concentrate on proving the opposite inequality. It follows from
(4.11.1) and (4.11.6) that, for every polynomial 17,

w(dy,z)<|H|(2)|’2(2n)’1J‘Ozn|H(u)|2dy(t), u=e".  (4.11.11)

By Theorem 4.11.2, there is a sequence {A,}, n=1,2,., of continuous
2zn-periodic functions such that (4.11.3)-(4.11.5) hold. For given z (|z] < 1),
N=12,.., ¢>0, m=1,2,., n=1,2,.., and M=1,2,.., let II be a
polynomial such that I7+# 0 in the open unit disk and

[T(e")| =0 4f{(h,0,m(1/(e + 1)) |Knldt, e, 2)12)%, 1), (4.11.12)
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where ¢, denotes the arithmetic means (ie., Fejér sums) of the
trigonometric Fourier series of the functions under consideration and
di(ty=dt refers to the Lebesgue measure on [0, 2n]. Since I7#0 in the
open unit disk, we have |D(|IT], z)|* = |II(z)|. The next step is to substitute
(4.11.12) back into (4.11.11) and then let, first, M — oo, then n — oo, then
m — o0, and then & — 0. All limiting procedures are justified by Lebesgue’s
Bounded and Monotone Convergence Theorems, and we obtain

o(du, z) < |D(', 2)1? |Kpldl, 2, 2)| 72 2m) !
2n
xf \Knldl, u, 2)2dt,  u=e", (4.11.13)
0

that is

w(du, ) < |D(, 2)|? wpldl, 2) (4.11.14)

for every N=1, 2,.... Since the orthonormal polynomials associated with
the Lebesgue measure are z",n=0,1,2,., one has no problem in
evaluating the right-hand side of (4.11.14), and, letting N — oo, we arrive at

wldu, 2) < (1= 1z1?) D', )% |zl <1, (4.11.15)

which, together with inequality (4.11.10), completes the proof of
Theorem 4.11.1 when log '€ L,. Otherwise, we apply (4.11.2) with du;,
where du; = du + ddl (6 >0, dl denotes the Lebesgue measure), and then let
00, which proves (4.11.2) in the general case as well. ||

Now Szego’s theory can be summarized by the following

THEOREM 4.11.3 [GrSz]. Letlogu'eL,. Then

lim x,(du)=D(y,0) ", (4.11.16)
lim ¢X(du, z)=D(w,z)~",  lzI<], (4.11.17)
Z (Pk(d[l, Z) q)k(d,u" u)= (1 _Eu)ﬁl D(ﬂl, Z)_l D(lu’) u)ila |ZI9 |ul < 1’
k=0
(4.11.18)
and
lim ,(ds,z)=0, |zl<l. (4.11.19)

n— oG
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The convergence in (4.11.17)-(4.11.19) is uniform on compact subsets of the
open unit disk. Moreover,

lim z "¢, (du, z)=D(i,z" ")}, lz| > 1, (4.11.20)

n— 0

uniformly on compact sets in the domain |z| > 1 on the Riemann sphere.

Proof of Theorem 4.11.3. Applying Szegd’s Christoffel-Darboux for-
mula (3.21) with z=u=0, we obtain

K,(du) = w,(du, 0) =12 (4.11.21)

(cf. (3.19) and (3.20)) so that (4.11.16) is equivalent to the case z=0 in
Theorem 4.11.1. The next step is to prove (4.11.19). It follows from (4.11.2)
that

i loeldu, )1 =(1—12*) " [D(', 2) 7%, |zl <1 (41122)

k=0

(cf.(4.11.1) and (3.20)), and thus (4.11.19) holds for every z in the open unit
disk. Moreover, by (4.11.22), the sequence of orthogonal polynomials
{@n(du, z)} is uniformly bounded on compact subsets of the open unit
disk, which implies unifrom convergence in (4.11.19) on compact subsets of
the open unit disk. Now we are in a position to verify (4.11.17). By Szego’s
formula (3.21) applied with z=u, we have

(1= 121%) K(dp, 2, 2) = |@H(dp, 2)I> — |@,(du, 2)|?,  (4.11.23)
that is, by (3.19),
(1—12") = w,(dp, 2) " |@X(dy, 2)1> —w,(du, z) " |@,(du, 2)|% (4.11.24)

By (4.11.19),
lim w,(dyu, z) " |@.(dy, 2)|> =0, lz] <1, (4.11.25)
and thus
lim o, (du, z) " le¥(du, 2)I*=(1—1z?), lzI<1l.  (411.26)

Now (4.11.26), combined with (4.11.2), yields

lim | (du, z)| = D', )17zl <L (4.11.27)
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Since
oXdp, 0)=x,(du)>0 and D(,0)>0 (4.11.28)

(cf. (3.17), (3.22), and (3.25)), and we have already proved (4.11.16),
formula (4.11.17) follows from (4.11.27). Formula (4.11.18) is a direct
consequence of (4.11.17), (4.11.19), and Szegd’s summation formula (3.22).
Finally, (4.11.20) is equivalent to (4.11.17) (cf. the »-transformation defined
by (3.22)). Thus we have succeeded in proving the main results of Szegd’s
theory by using Christoffel functions. ||

4.12. Asymptotics for Orthogonal Polynomials and
Equiconvergence of Orthogonal Fourier Series

Freud made two lasting contributions to the theory of orthogonal
polynomials on the unit circle. The first provides asymptotics for the
orthogonal polynomials on the circle itself under conditions substantially
weaker than those assumed by Bernstein [Be2, Be4], Szegd [Sz2], and
Geronimus [Ger2-Ger4]. The second is related to convergence of
orthogonal Fourier series, and improves upon Szegd’s theorem on equicon-
vergence of those series with trigonometric Fourier series. The idea of
reducing problems of convergence of orthogonal series to that of
trigonometric Fourier series was first developed by A. Haar [Ha] in 1917
and it did indeed simplify finding convergence (and summability) con-
ditions for Fourier series in orthogonal polynomials. Before going into
detail regarding equiconvergence of orthogonal Fourier series, T will briefly
report on Freud’s results concerning asymptotics of orthogonal
polynomials (cf. [Fr16, Fr17, Fr3la, b]).

To my great regret, at the present time I cannot (and neither could
Freud) prove these asymptotic formulas via the exclusive use of Christoffel
functions. Instead, the main tool of the trade is Szegd’s observation that the
x-transforms of the orthogonal polynomials ¢, (du) are essentially nothing
else but partial sums of orthogonal Fourier expansions of the Szegd
function (cf. (3.25)). More precisely, it follows from (3.20) and Szegd’s
Christoffel-Darboux formula (3.21), applied with u =0, that

n—1

Ka(dp) X (dp, z)= Y. @i(du, 0) @i(dy, z). (4.12.1)
k=0
By Theorems 4.10.1 and 4.10.3,
D(W,0)" ' D(p',2) "= Y @uldy, 0) @i(dy, z) (4.12.2)
k=0

in L,(di), and thus, in view of (4.11.16), we have
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THEOREM 4.12.1 [Sz2]. b’log u €L, then
nlingo LG loX(du, z)—D(i', z) 7P du(t) =0, z=e" (4.12.3)
which, in terms of the orthogonal polynomials themselves, can be written as
lim foz \o,(du, ) — 2" DI, 2) 2 du(t) =0, z=e". (4.12.4)

Pointwise versions of (4.12.4) naturally require analyzing conditions for
pointwise convergence of the series in (4.12.2). What I find to be the
strongest result so far concerning pointwise asymptotics is the following
theorem of Freud, which was first published in his book on orthogonal
polynomials [Fr3la,b], an unorthodox way to announce new results,
indeed.

THEOREM 4.12.2 [Fr3la,b]. Letlogu €L,, and let te [0, 2n] be fixed.
Assume that du is absolutely continuous in a neighborhood A of t, u'e L,
and (') ‘el in 4, and

[ W =wit =y dy<co. (4.125)

Then

lim [o,(du,z)—2z" D, z)"']=0, z=e" (4.12.6)

The question whether the asymptotic formula (4.12.6) can be differen-
tiated seems to be more complicated. While there have been some efforts to
obtain asymptotics for the derivatives of orthogonal polynomials
(cf. [Gol2, Hér, Ra]), it was only recently that this could be achieved
under conditions no more restrictive than those appearing in Freud’s
Theorem 4.12.2. For me this is a particularly pleasing circumstanc since it
was my paper [Ne23] which succeeded in removing the more restrictive
conditions imposed on the measure in the above-mentioned papers.

THEOREM 4.12.3 [Ne23]. Let du and t satisfy the conditions of
Theorem 4.12.2. Then
lim [n *e®dy, z)—z" *D(u,z)"']1=0, z=e" (412.7)

n— oo

for every fixed positive integer k.
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Now let us return to equiconvergence of orthogonal Fourier series. In
his seminal paper [Ha], A. Haar proved that orthogonal Legendre series
and Chebyshev series of integrable functions are equiconvergent; i.e., the
difference of the corresponding appropriate partial sums converges to 0.
Haar’s proof itself is much less exciting than the idea of reducing con-
vergence of one series to that of another one, and it is actually a careful
analysis of the asymptotic formula for Legendre polynomials with suf-
ficiently accurate remainder terms. In fact, Haar’s method is directly
applicable to all classical orthogonal polynomial series, such as Jacobi,
Hermite, and Laguerre series (cf. [Sz2]). The real fun starts when one
leaves the road covered by remnants of classical orthogonal polynomials
and starts to examine general orthogonal polynomial series. Here the glory
belongs to Szegod (cf. [Sz4, Vol I, p. 437; Sz2]), whose results were later
recast and generalized by J. Korous [Koro3-Koro5], Geronimus [Ger2],
and Freud [Fr31a, b]. The strongest results available regarding equicon-
vergence of orthogonal Fourier series are found in (Nel9]. Naturally, hav-
ing had the pleasure of standing on the shoulders of this distinguished com-
pany, my job of putting the pieces together and adding my expertise on
Christoffel functions was more or less a logically unavoidable conclusion of
approximately 60 years of research. Oh yes, my reader, it is the Christoffel
function again which keeps the orthogonal Fourier series within the norms
of mathematico-socially acceptable and expected behavior. It is somewhat
unfortunate, however, that the technical details associated with equicon-
vergence of orthogonal Fourier series have not been crystallized yet to the
extent that it can be presented without introducing elements of ugly
matematics, ie., mathematics involving long chains of estimates and
inequalities leading to te right place without providing a continuous flow of
eye- and mind-pleasing landscapes. For this reason you and I, my reader,
will take the easy way out, which consists of concentrating on the main
ideas and leaving out much of the detail.

In the rest of this section we deal with measures supported on the real
line and our object is to investigate equiconvergence of two orthogonal
Fourier series

S(da, f)= i cilda, 1) pilda) (4.12.8)

and
S(dp, f) = i (B, 1) peldB), (4.129)

where the Fourier coefficients ¢, are defined by a formula similar to (3.11).
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Equiconvergence of S(dx, f) and S(df, /) at a particular point x simply
refers to the fact that

lim [S,(dw, £, x)—S,(dB, £, x)]=0, (4.12.10)

n— 0

where S, is the nth partial sum of the infinite series (cf. (3.10)).
In what follows we assume that dx and df are related to each other by

df = g do, (4.12.11)

where g (=>0)e L,(dx). We will also need the G operators defined by
(4.5.6), which we used extensively in Section 4.5 while finding asymptotics
for Chistoffel functions. For reference, these operators are given by

G, (de, b, x) = A,(da, x) j h(t) K, (do, x, £)2 da(r)  (4.12.12)

for he L,(dn). Here, of course, 4, is the Christoffel function and K, is the
reproducing kernel (cf. formulas (3.3}, (3.12), and (3.13)).

The fundamental idea behind equiconvergence of orthogonal Fourier
series is given by the following theorem proved in [Nel9, Lemma 8.1,
p. 147], which crystallizes Szegd’s concepts introduced in [Sz4, Vol. I,
p.437].

THEOREM 4.12.4 [Nel9]. Let supp(dx) be compact, g=0, ge L,(dx)
and g~ e L ,(dw). Let dp be defined by (4.12.11) and assume that f € L,(dp).
Then

|S{dB, £, x) — Aa(dar, x) L,(df, x) ™" S,(du, fg, x)|
S ”f”dﬂ,z{ln(dﬂa x)-l[G,,(d(Z, gﬁl’ X) Gn(da, g’ X) - 1]}1/2
(4.12.13)

for all real x and n=1, 2,..., where || f|| 45, denotes the L,(df) norm of f.
Proof of Theorem 4.12.4. Let us denote the left-hand side of (4.12.13) by

R(x). Then, by (3.14),
R(x) =f f(2) g(1)[K, (B, x, 1) — A,(dot, x) A,(dB, x) ™" K,(do, x, 1)] dou(2).
(4.12.14)
Applying Schwarz’ inequality, we obtain
R(x)I’< {||f||dﬁ2}2 (4.12.15)
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where
K(x)= J [K,(dB, x, t) — A, (do, x) A,(dB, x) ' K,(du, x, 1)]* d(2).
R
(4.12.16)

Let us evaluate K(x) by multiplying out the integrand and using properties
of reproducing kernel functions. We have

K(x)=] K,(dp,x,1)" df()
— 24, (do, x) A, (dB, x) " j K,(dB, x, 1) K,,(da, x, 1) dB(1)

+ 2, (dw, x)* A, (dB, x) 2 j K, (da, x, 1) dB(1)
— K,(dB, x, x)— 24, (dst, x) A,(dB, x) ' K, (do, x, x)

+ 2,(doty x)? A,(dB, x) 2 f K, (d, x, t)? g(1) da(t).  (4.12.17)

Taking (3.3), (3.12), and (4.12.12) into consideration, we can conclude

K(x)=A,(dB, x) ' [A(da, x) A,(dB, x) ' G,(do, g, x)—1]. (4.12.18)

By Theorem 4.5.8 (cf.(4.5.14)), we have

Ao(do, x) A, (dB, x) "' < G, (dn, g, x) (4.12.19)

and thus

K(x)<A(dB, x) ' [G(da, g7, x) G, (dx, g, x)—1]. (4.12.20)

Now the theorem follows from (4.12.15) and (4.12.20). |

Having proved Theorem 4.12.4, let us try to digest what it says. For the
convenience of the reader, I reproduce (4.12.13) as

|S..(dB, £, x)— An(dat, x) A,(dB, x) " S, (da, fg, x)|
< Hf”dB,Z {;"n(dﬂa x)ml[Gn(da’ gil’ X) Gn(da’ gs x)—' 1]}1/2'

(4.12.21)
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First, let us analyze the right-hand side of this inequality. By
Theorem 4.5.4,
lim G,(dw, A, x)=h(x), (4.12.22)

n— o
where either h=g or h=g !, provided that g is continuous and du
satisfies some conditions. Moreover, by imposing somewhat stricter
conditions on g and 4, one can actually improve (4.12.22) to

lim G,(da, h, x)=h(x)+ O(1/n) (4.12.23)

n-— oo

(h=g or h=g~"), which, in turn, would guarantee the boundedness of the
right-hand side of (4.12.21), since 4,(dB, x)~'=O(n) under fairly mild
conditions on df (cf. Theorem 4.5.2).

Now let us take a closer look at the left-hand side of (4.12.21).
Intuitively, it is clear that S,(du, fg, x)— g(x) S,(da, f, x) tends to 0, as
n— oo, whenever g is reasonably smooth {we all know that equicon-
vergence takes place for smooth functions; moreover, it does so for fairly
obvious reasons). In fact, it is not difficult to show the validity of

lim S, (d«, fg, x)— g(x) S,(d, 1, x)=0 (4.12.24)

n-— oo

under reasonably mild conditions imposed upon g and du. The other term
on the left-hand side of (4.12.21) to be taken care of is
Ao(de, x) A,(dB, x)~". In view of (4.12.23) and the techniques discussed in
Section 4.5 (cf. Theorems 4.5.4 and 4.5.8), one can indeed prove

A(da, x) A, (dB, x) ™' = g(x)~' + O(1/n) (4.12.25)

whenever g is sufficiently smooth and dx satisfies some conditions.

By (4.12.24) and (4.12.25), one can show that the left-hand side of
(4.12.21) is essentially the same as the expression S,(df, f, x)— S,(dx, f, x),
which was our original primary target. What is left is to formulate
accurately the conditions which are needed to guarantee the validity of all
the above-discussed estimates. This was accomplished in [Nel9, Chap. 8]
where I proved the following theorem on equiconvergence of orthogonal
Fourier series and Chebyshev seires. We need to introduce a few definitions
in order to formulate this result.

The Chebyshev measure will be denoted by d7, i.e., dT(¢) =v dt, where

o()=(1 =) (lf|]<1) and  o(t)=0(jf|=1). (4.12.26)

For a given modulus of continuity w, the class B(x, w) is defined as follows.
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The function F belongs to B(x, w) if and only if F'(x) exists and
|F(t)— F(x) = F(x)(t —x)| < C,o(|t — x|) |t — x| (4.12.27)

for |t — x| small, where C, does not depend on .

THEOREM 4.12.5 [Nel9]. Let dx satisfy supp(de)=[-—1,1],
log &’ € L,, and suppose that there exists a polynomial IT such that IT*/a’' € L,
in [—1,1]. Let xe(—1,1) and let dax be absolutely continuous in a
neighborhood of x. Assume that o' € B(x, w) with w(t)/te L in [0, 1] and
o'(x) > 0. Then, for every fe L,(dx), we have the equiconvergence

lim [S,(dx, £, x)—S,.(dT, f1; x)]=0, (4.12.28)

n—r 0

where 14 is the characteristic function of the interval [x —0,x+ 6] and 6 >0
is a sufficiently small fixed number. If, instead of the given point x, all the
conditions are uniformly satisfied in a neighborhood of a fixed interval
A< (—1,1), then (4.12.28) holds uniformly for x € A4, where, this time, 1;
denotes the characteristic function of a sufficiently small 5-neighborhood

of A.

4.13. Stepping beyond Szegd’s Theory

Szegd’s theory takes care of orthogonal polynomials when log u’ is
integrable. Here I will tell the story of what is happening when this con-
dition is replaced by the much weaker one, u'>0 almost everywhere.
Szegd’s theory was essentially created by a single individual. The principal
players of the new game are A. Maté, E. A. Rahmanov, V. Totik, and L.

Not counting Erdds and Turdn’s [ErTu3], other results regarding dis-
tribution of zeros of orthogonal polynomials, and related asymptotics, the
first steps towards extending Szegé’s theory to orthogonal polynomials
when the corresponding measure does not satisfy Szegd’s condition of
logarithmic integrability were taken by Rahmanov [Rahl] and me in
[Nel9, Ne20, Ne24]. One of the many equivalent ways of formulating
Szegd’s limit result (4.11.16) is that

2n — .
lim (27:)*1[ l@.(du, 2)z "D, 2)— 112d6=0, z=e® (4.13.1)

n— oo 0

whenever log u'e L, (cf. (3.25) for the definition of Szegd’s function D).
Rahmanov [Rahl1] proved the following weak version of (4.13.1),

lim (2n) [ F6) lo,(du. ) du0)= 2m) [ ROy do,  z=e”,

n— oC

(4.13.2)
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for every continuous function F provided that u’' > 0 almost everywhere in
[0, 2n], and he also claimed to have proved the following variants of
(4.11.16) and (4.11.20),

lim «,(du)/x,_ (du)=1 (4.13.3)
and
nlirrgo @ (du) e, _(du)=z, |z| > 1, (4.13.4)

if p' >0 a.e., which, among others, also implies Theorem 4.5.7. As indicated
after Theorem 4.5.7, correct proofs of (4.13.3) and (4.13.4) where published
in [Rah4], and a conceptually simpler proof of the latter two limit
relations was given in [MaNeTo2]. I wish also to point out that, on the
basis of (3.21) (applied with z=0 and u=0), it is an easy exercise to show
the equivalence of (4.13.3) and

lim ¢, (dy, 0)=0, (4.13.5)
k—

where ¢,(dp) is the monic orthogonal polynomial (cf. (3.23)).

What I proposed in [Nel9, Ne24] amounts to regarding Szegd’s theory
as a theory describing the behavior of orthogonal polynomials and related
quantities in terms of another system, the system corresponding to
Lebesgue measure, and in terms of Szegé functions of ratios (of the
absolutely continuous components) of the associated measures. Then I
went one leap further by comparing two orthogonal polynomial systems
when the corresponding measures du, and dyu, do not satisfy Szegd’'s
condition of logarithmic integrability. More precisely, assuming that one
does have appropriate information regarding du, and the associated
orthogonal polynomials, and that one does know that du, can be expressed
in terms of du, as

du, = g duy, (4.13.6)

where g is a reasonably well behaved function, one can then deduce infor-
mation regarding the orthogonal polynomials associated with du,. This is
how I found asymptotics for the leading coefficients y,(dx) of the (real)
orthogonal polynomials corresponding to the (absolutely continuous)
measure da given by

a'(x)=exp{—(1 —x?) "2}, —-1<x<1, (4.13.7)

which is perhaps te simplest measure not covered by Szegd’s theory. In this
example I used the Pollaczek polynomials [Poll; Pol2; Pol3; Szl; Sz2,
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p. 392] as the comparison system, which is orthogonal with respect to the
absolutely continuous measure df'“? defined by

B (x) =2 exp{t(acost+b)/sint}[1+exp{n(acost+b)/sinr}]™",
(4.13.8)

where a and b are real numbers with |b| <a, x=cost and 0< <7 The
result proved in [Nel9, p. 83] is the asymptotics

lim y,(dx) 2 "n V" = [((n + 1)/(2n)) DB/, 0).  (4.13.9)

n— oo

My methods in [Nel9, Ne24] did not allow me to consider sufficiently
general measures in (4.13.6), and I was restricted to working with measures
where the function g in (4.13.6) and its reciprocal were Riemann integrable.

The next (still lasting) breakthrough in extending Szego’s theory started
with [MaNeTo7], where various strong and weak convergence properties
of complex and real orthogonal polynomials were proved. One of the main
tools in generalizing Szegd’s theory is the following limit relation proved in
[MaNeTo7, Theorem 2.1].

THEOREM 4.13.1 [MaNeTo7]. If u’' >0 almost everywhere, then

H— 0

lim (2n)’1J2n[l¢n(du,z)| (W(O0)2—112d0=0, z=¢® (413.10)

What is significant in this theorem is not only that it strengthens
Rahmanov’s weak asymptotics (4.13.2), but also that, in view of the boun-
dary value property of Szegd’s function |D(y')|>=p’ (cf. (3.27)), formula
(4.13.10) provides the natural extension of Szegd’s L, asymptotics (4.13.1)
which forms the basis of Szegd’s theory. Moreover, I find it rather extraor-
dinary that not only Szegdé and Freud missed discovering Theorem 4.13.1
but also Rahmanov, who put so much effort into proving the weaker
(4.13.2). Those who are familiar with Rahmanov’s proof of (4.13.2) in
[Rah1] will recognize that our proof of (4.13.10) borrowed some ideas
from [Rahl]. Before presenting the proof of (4.13.10), I state the following

THEOREM 4.13.2 [Rahl]. For all measures du and for all 2n-periodic
continuous functions F, the limit relation

lim (27)" f” F(0) |9,(du, 2)] 2 db = (27) " j FO)du(®), z=e"

n— o0 0

(4.13.11)
holds.

64048 1-6
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Proof of Theorem 4.13.2. If F is a trigonometric polynomial, then
(4.13.11) holds since

@) [ FO) o 2)) 2 do=n) " [T ) duto),  z=e”
(4.13.12)

for n>deg(F) (cf. [Fr3lb, Theorem 5.2.2, p.1987]). Otherwise, we use a
straightforward approximation argument. ||

For reasons of historical justice, I mention that Theorem 4.13.2 is
implicity contained in both Bernstein’s and Szegé’s reasoning when proving
the orthogonality of the so-called Bernstein-Szeg6é polynomials (cf. [Fr31b,
Theorem 5.4.5, p. 2247). However, Rahmanov deserves full credit for the
realization that it can be used in situations that neither Bernstein nor Szegd
thought of. For reasons that go beyond purely sentimental ones, I consider
(4.13.12) the complex analogue of the Gauss—Jacobi quadrature formula
(3.4), and then Theorem 4.13.2 is the analogue of the theorem on con-
vergence of the Gauss—Jacobi quadrature process for measures with com-
pact support.

Proof of Theorem 4.13.1. We have
2n
0<(27r)"j0 [lea(dp, 2)| (1'(0))2 — 11 db
2n 2n
=) [ loudn 2P W(O) b7 [T lo,(du 2)] (4'(0))'7 dO+ 1
2z L 2n
<(27r)‘1'f0 |@a(dp, 2)|? Au(0) —m~ L |@a(dp, 2)| (1'(6))"% d6 + 1

2n
=2-n! J l@.(dy, 2)] (W(0)72db,  z=e" (4.13.13)
0

Therefore it will be sufficient to prove that

2n
1iminf(2n)“f (o (d, 2)] (£(0))2dBz1, z=e® (4.13.14)
0

27— 00

To see this, let / be an arbitrary 2zn-periodic nonnegative continuous
function. By Holder’s inequality applied to appropriate functions, we
obtain
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{an= [" o) oy w)
<{en [ o o) o aol
x {(27!)“1 j: £(0) |@(du, 2)] 2 d()}, (4.13.15)
z=exp(if). Letting n — oo, Theorem 4.13.2 yields
fon [ o oy ol

2n 2
<lim inf{(zn)—‘ [ 0w 2 (@) de}

x {(27{)~1 L“f(e) du(H)}, (4.13.16)

z=exp(if). Fix &¢>0, and choose a sequence {h,}, m=1,2,. of
continuous 2zn-periodic functions such that (4.11.3)-(4.11.5) hold, with u
substituted for v. For M =1, 2,.., let f = f(¢, m, M) be defined by

f0)=h,0,((c+p')"",0), (4.13.17)

where o,, denotes the arithmetic (i.e., Fejér) means of the trigonometric
Fourier series of the functions under consideration. Applying (4.13.16) with
this choice of f, and then first letting m — co, then M — oo and finally
¢—0, we establish inequality (4.13.14), which, in turn, proves the
theorem. ||

What I have described so far in this section is how the foundations of
this new theory have started to be laid down. Due to the great variety of
results and the extensive nature of their proofs, I have no hopes of
providing the reader with an accurate portrayal of the present state of the
art. Instead, I will state a few results which I expect to make the reader
curious enough to turn to original sources such as [MaNeTol, MaNeTo2,
M4aNeTo5-MaNeTo10, Nel9, Ne20, Ne24, Rahl, Rah4].

THEOREM 4.13.3 [MaNeTo9, 10]. Let uj > 0 almost everywhere, and let
du,= gdu,, where the function g>0 is such that RgeL_(du,) and
R/ge L _{(du,) for some trigonometric polynomial R. Then

khm (P,,(d/lz, Z) (pn(dlul, Z)_l =D-(1/ga 1/2)7 (41318)
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uniformly on every closed subset of the complement of the closed unit disk. If,
in addition, at a real point t, the function g satisfies

g)>0 and  |g(t)—g(0)| <K|t—0 (4.13.19)

SJor |t—0l <6 (6>0 is fixed), then the asymptotic formula (4.13.18) also
holds for z=exp(it).

THEOREM 4.13.4 [MaNeTo7]. Let dx be such that supp(da)=[—1, 1]
and o' >0 almost everywhere in [ —1,1]. Then, for every fe L. and for
every integer j, we have

Tim [ 700 (e, 1) p s, 1) d()

=n-1jl F() T (01— %) ar, (4.13.20)

where T,; denotes the |jlth Chebyshev polynomial of the first kind.
Moreover, Turan’s determinant D, (do) defined by

Dn(da9 t)=pn(da’ t)z_pn+l(da’ t) pn—l(das t) (41321)

satisfies

1
lim f ID,(do, 1) (1) =21 "(1— )| dt=0.  (4.13.22)
—1

n— oo

The latter L, asymptotics for the Turan determinant D, not only
explains why D, is nonnegative in all those special cases investigated by
Turan [Tul], Karlin and Szegé [KarSz], Askey [Asl], and others
(though it does not actually prove nonnegativity); it also has an invaluable
application in finding absolutely continuous components of measures
associated with orthogonal polynomials generated by three-term recurren-
ces of the form (3.7). This program has been carried out consistently by
Askey, Ismail, and their collaborators in a series of papers including
[AsIs2, Asls3, Banls, Buls, Is3—Is5, IsMu]. The point is that it is a matter
of simple iteration to evaluate D, in terms of the recurrence coefficients
(3.8) when the orthogonal polynomials are defined recursively, and by my
results proved in [Nel9, DoNe, MaNe3, MaNeTo4], one can show that
Turan’s determinant D, converges pointwise under fairly weak conditions
on the recurrence coefficients. Once we know that D, converges, then of
course, in view of (4.13.22), finding the limit poses no problems what-
soever.

The last result I mention in this section is one of my all-time favorites.
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THEOREM 4.13.5 [MaNeTo5]. Let dx be such that o >0 almost
everywhere in [ —1,1] and, for every ¢>1, the set supp(da)\[ —¢, ¢] is
finite. Then, for the corresponding Christoffel functions, the strong
asymptotics

1
lim j \[nd(do, )] "L o(1) == (1—£2) 2 dt=0  (4.13.23)
n-—» o 1

holds.

It is my sincere hope that the above selection of results regarding exten-
sions of Szegd’s theory will arouse the reader’s appetite and stimulate his
intellect to read more, learn more and contribute more to this subject.

4.14. Farewell to Orhogonal Polynomials in Finite Intervals

The purpose of this section is to assemble the pieces that are necessary to
prove the estimate regarding the Lebesgue function Q,(da) which was for-
mulated in Section 4.3 and which I claimed to be a simple application of
the most significant results of the post-Szegé era of orthogonal polynomials
cultivated by A. Maté, E. A. Rahmanov, V. Totik, and me. Recall that, for
a given measure du, the Lebesgue function £2,(dx) is defined by

Q. (do, x)= sup |S,(du, f, x)|, (4.14.1)

Ifles1
where C=C[—1,1]. Here S,(dx, f) is the nth partial sum of the
orthogonal Fourier series expansion of f in p,(dx) (cf (3.10) and (4.3.1)).

The result we have to prove here is Theorem 4.3.1. For the convenience
of the reader I restate this theorem as

THEOREM 4.14.1 (Nevai). Assume supp(da)=[—1,1] and o'(x)>0
almost everywhere in [ —1, 1]. If a is continuous at xe [ —1, 1], then

lim A,(da, x) Q,(de, x)*=0. (4.14.2)

n— 0

If o is uniformly continuous on a closed set M —(—1,1), then (4.14.2) is
satisfied uniformly for x e .#. If, in addition, log o’(cos 8)e L,, then

lim n~2Q,(da, x)=0 (4.14.3)

n— C

almost everywhere in [ — 1, 1. Finally, if o is continuous and positive on an
interval A< [ —1,1], then (4.14.3) holds uniformly on every closed sub-
interval of A.
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Proof of Theorem 4.14.1. On the basis of (3.14), we can write

Q,(da, x) = jR K, (da, x, 1)| da(t). (4.144)
Fix £ >0. Then
Q,(dw, x) =jlx . Kda,x, 0 datt) + LH‘ 1K (do, x, )] ).
(4.14.5)

By Schwarz’ inequality, we have

[ j K, (da, x, 1) da(z)T
lx—1t| <&

qlx thda(t)j K, (dw, x, 1)? da(?)

1x— l|<e

< [a(x +8) — alx —e)]j K. (du, x, 1)? da(?)

=[a(x+e)—a(x—e)] A,(da, x) L (4.14.6)

We use the Christoffel-Darboux formula (3.13) to estimate the second term
on the right-hand side of (4.14.5). We obtain

[ IK(da, x, 0] du(r)
|x—tl=ze
<a,e " [ 1 palda, x)p,1(da, 1) = p, s(dt, x)p,(dos 1)] (1)
R

1/2
o Iplds, )+ pa (dn 0} | [ dsn] " a140)

where a,=a,(dx) is the recurrence coefficient in (3.7). Combining
(4.14.5)-(4.14.7), we can conclude

A (dx, x) Q,(dx, x)?
< 2[a(x + &) ~a(x — )] + daZe ~2A"(dx, x){ p,(d, x)*
+p,_i(da, x)z}f da(t). (4.14.8)
R
Now if a’>0 a.e. in [ —1, 1], then by Rahmanov’s Theorem 4.5.7,

n— cc
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(cf. (4.5.11)), and by Theorem 4.5.6,
lim A,(do, x) p,(da, x)*=0 (4.14.10)

n— o0

(cf. (4.5.10)) for every xe [ —1, 1]. Moreover, (4.14.10) holds uniformly in
every closed subinterval of (—1, 1). Therefore, by (4.14.8)-(4.14.10), the
asymptotics (4.14.2) is satisfied at every point of continuity of «. If we also
assume that log a’(cos 8) € L,, then, by Theorem 4.5.1, we have

lim sup [n4,(dx, x)] ' < o0 (4.14.11)

n— oo

(cf. (4.5.1)) for almost every x in [ —1, 1], and thus (4.14.3) follows from
(4.14.2) and (4.14.11). Finally, the statement regarding uniform con-
vergence in (4.14.3) is a consequence of (4.14.2) and Theorem 4.5.2, where
uniform estimates are given for (4.14.11). |

In the hope that I have succeeded in fulfilling my elaborate plan to take
the reader on an exciting journey through some aspects of the general
theory of polynomials, orthogonal on bounded intervals, I now set out to
expand our horizon by moving on to the second major topic of this study
which consists of polynomials orthogonal on the whole real line.

PART 2: ORTHOGONAL POLYNOMIALS ON
INFINITE INTERVALS

In this Part, all measures will be absolutely continuous, say dx=w dx,
and we use the notation p,(w, x), 4,(w, x), etc., instead of p,(dx, x),
An(da, x), and so forth. The function w is referred to as a weight function.

4.15. Freud Weights

Freud’s contributions to the theory of polynomials orthogonal on boun-
ded intervals are by no means as significant as those of Szegd, who almost
single-handedly laid down the fundations of a powerful theory when the
associated measure is supported on a compact interval and the absolutely
continuous component of the measure satisfies Szegd’s condition of
logarithmic integrability. Sometimes I wonder what would have happened
if Szeg6 had tried to apply his unsurpassable ingenuity and analytic skills
to orthogonal polynomials on infinite intervals. It baffles me why Szego did
not attempt to create a general theory of orthogonal polynomials on
infinite intervals. I have no doubt that had he initiated research in this
direction earlier, say, half a century ago, by now we would have an essen-
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tially completed theory of orthogonal polynomials associated with
measures with noncompact support.

For Freud this presented a wonderful and practically unmissable oppor-
tunity to carve his name in the history book on orthogonal polynomials as
the founder of a new theory. As a result of Freud’s juggernautic energy, in
the last 10 years of his life he introduced a class of polynomials which we
now call the Freud polynomials. They are the subject of the remaining
sections of this work.

Twenty years ago there was a great amount of information available
regarding some orthogonal polynomials on infinite intervals for which one
could find characterizations in terms of explicit special functions, differen-
tial equations, generating functions, recursive formulas, and so forth. As
examples I mention the Hermite, generalized Hermite, Laguerre, Lommel,
Meixner, Poisson—Charlier, Pollaczek, and Stieltjes—Wiegert polynomials
(cf. [As6, Chi3, Sz2]). While working on problems related to the uni-
queness of the solution of the moment problem, on convergence of Gauss—
Jacobi quadrature, orthogonal Fourier series and Lagrange interpolation
(cf. [Fr19-Fr21, Fr23, Fr24, Fr26, Fr32, Fr33]) and on his book
[Fr3la, b] in the sixties, Freud realized not only that there had been a
complete lack of results regarding general orthogonal polynomials on
infinite intervals but also that the then available tools of the trade did
not enable one to obtain such results without undue efforts of mostly
an ad hoc nature. Moreover, being an approximator of considerable
breadth, Freud also set his eye on extending and expanding the
Jackson-Bernstein-Timan’s theory of direct and converse theorems of
approximation theory to infinite intervals. It was this goal which directed
Freud towards general orthogonal polynomials on infinite intervals. He
reasoned as follows. If one wishes to approximate, then one has to be able
to construct tools for such an approximation; although best approximation
might be difficult if not impossible to achieve by simple means, one should
be able to produce nearly best approximations; the way to a man’s best
approximation is via delayed arithmetic (i.e., de la Vallée—Poussin) means
of orthogonal Fourier series; behind every bounded delayed arithmetic
mean there is a nearly positive (C, 1) mean; (C, 1) means and Christoffel
functions live and thrive together; there are no Christoffel functions
without orthogonal polynomials. The above line of reasoning is more than
just a pure guess on my part, as to the nature of Freud’s reflections. As a
matter of fact, I could have used direct quotation marks (allowing a certain
poetic freedom) since I was privileged to have conducted long conver-
sations with him regarding the way he arrived at the conclusion that it was
time to move the emphasis to the whole real line and to orthogonal
polynomials there.

Quite understandably, Freud took the Hermite polynomials k4, as the
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cornerstone and prime example of orthogonal polynomials with weights
whose support is noncompact (they are related to Fourier tranforms, one
of the basic concepts in harmonic analysis). The Hermite polynomials are
orthogonal with respect to exp(—x?). Thus the proper generalization
would be considering orthogonal polynomials associated with either
exp(—x>"), m a natural number, or exp(— |x|™), m >0, or exp(—Q(x)), Q
being of a prescribed growth. These weight functions and their slight
variations are the ones which various authors these days are inclined to call
Freud weights.

Freud’s first paper on this subject is [ Fr20], where he considers weight
functions w which satisfy

C,exp(—Cx) < w(x)< Crexp(—Cx?), xeR, (4.15.1)

where C, C, and C, are positive constants. Using ideas discussed and dis-
sected in Section 4.4., Freud proves that the orthogonal Fourier series
associated with p,(w) is |C, 1| summable aimost everywhere on the real line
for all fe L,(w). Naturally, as the reader is expected to anticipate at this
point, it is the Christoffel function of the Hermite polynomials which plays
the role of the drum major.

In [Fr327 Freud takes a deep dive and introduces the Q’s and ¢,’s we
(the experts) are all familiar with. What I refer to is weights w of the form

w(x) =exp(—Q(x)), xeR, (4.15.2)

where 0 >0 is an even C! function on R such that xQ’(x) increases for
x>0 and Q'(x)— o as x— . For such a function Q, the numbers
4,=¢,(Q) are the unique positive solutions of the equation xQ'(x)=n,
n=1,2,... Let me point out that these Qs and g¢,s were actually
introduced by M. M. Dzrabasyan and A. B. Tavadyan (cf. [Dz, DzTa]),
who used them to characterize the rate of weighted best polynomial
approximations of functions of several variables. (H. N. Mhaskar and E. B.
Saffs [MhSa$5, formula (3.7), p. 77] should also be mentioned where a
quantity, a,, of the same order of magnitude as g, is defined as a solution
of a certain equation. This «, is expected to play an important role in the
theory of weighted polynomial approximation.) What Freud does in
[Fr32] is to generalize results of M. M. Dzrabasyan and A. B. Tavadyan
for approximation on the real line in the one-variable case. Fortunately,
Freud did not stop here, and for the next (and last) 10 years of his life his
research mostly revolved around problems associated with the weight
{(4.15.2) in both orthogonal polynomials and approximation theory.

With all due respect to Freud, I must point out that he was completely
unaware of two papers of J. Shohat, [Sho3, Sho7], where weight functions
of the form exp(—17II(x)), xeR, are introduced and the corresponding
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orthogonal polynomials are shown to satisfy second-order linear differen-
tial equations with variable coefficients. I first heard of these papers in 1982
from R. Askey; earlier they seem to have been resting in oblivion.

At the present time the theory of orthogonal polynomials with Freud-
type weight functions has reached a state far beyond infancy. This is in
sharp contrast to my characterization of this theory in my paper [Ne297] in
1982, where I declared it to be virtually nonexistent. The past 4 years have
produced a number of extraordinary events which have started the mature
development of this subject. As a matter of fact, Freud himself never expec-
ted such fast progress, and he would certainly be most surprised to learn
about the latest developments concerning his polynomials. As the reader
will soon see, while Freud initiated the investigation of most problems in
orthogonal polynomials with Freud-type weights, his results have since
been surpassed in almost every respect in both sharpness and generality.
The responsibility (or, rather, honor) for improving and/or outdating
Freud’s results is to be shared by W. C. Bauldry, S. S. Bonan, A. L. Levin,
D. S. Lubinsky, Al. Magnus, A. Maté, H. Mhaskar, E. A. Rahmanov, E. B.
Saff, R. C. Sheen, V. Totik, J. L. Ullman, and me.

4.16. Christoffel Functions for Freud Weights

Freud started by estimating Christoffel functions for Hermite weights in
[Fr20] (lower bounds) and [Fr33] (upper bounds) in 1963 and 1968,
respectively. In the former, Freud applied a rather ad hoc approach based
on Mehler’s formula

Y pelw, x)? tf=n" (1 — )" Pexp{2tx¥/(1+ 1)}, (4.16.1)
k=0

where w(x)=exp(—x?), xeR, is the Hermite weight function (cf. [Sz2,
p. 102]). What Freud noticed was that, putting t=1— 1/ in (4.16.1) and
making some elementary estimates, one can easily conclude

w(x) A,(w, x) "' < const - n'2, xeR, (4.16.2)

where the constant is independent of » and x. This is in sharp contrast with
the estimate

max [w(x) po(w, x)>]~n""6 (4.16.3)

(cf. [Sz2, p. 242]). However, it is also well known that, for every 0 <e< 1,

[w(x) p,(w, x)*}~n— "7 (4.16.4)

m
| x| < e(2n)12
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(cf. [Sz2, p.242]), and thus {4.16.2) amounts to a {C, 1) extension of
(4.16.4) to the whole real line. Since generating functions such as (4.16.1)
exist only for a small privileged class of orthogonal polynomials, it is clear
that one should not expect to be able to apply this method for more than a
handful of weight functions.

The upper bound for the Christoffel functions of Hermite weights w was
found in [Fr33] by an equally ad hoc method; namely, first Freud used
Sturm’s comparison theorem (cf. [Sz2, pp. 19-217) to find upper bounds
for the distances between consecutive zeros of Hermite polynomials, and
then he applied the Markov-Stieltjes inequality (cf. [Fr3ib, p.297 ) to
obtain upper bounds for 4,(w, x). In this way he proved

w(x) "' A, (w, x)<const-n~ 12 |x| <e(2n)"?, (4.16.5)

for every fixed 0 <& < 1. Here, again, we face the same obstacle as before;
namely, there are no convenient differential equations available for general
weight functions for which one can find a comparison system whose
solutions have zeros with known behavior.

Naturally, in view of the extremal property (4.1.1), all estimates involv-
ing Christoffel functions of Hermite weights will result in similar estimates
for all weights w whose size is comparable to exp(—x?).

It took several years for Freud to realize that essentially all barriers
associated with infinite intervals can be removed by a clever argument
which enables one to estimate weighted L, norms of polynomials in terms
of integrals over finite intervals. The first such infinitefinite range
inequality (an expression coined by D. S. Lubinsky) was proved by Freud
in [Fr36] (in L) and [Fr40, Lemma 1, p. 570] (in L,(w)) for Hermite
weights and in [Fr50, Theorem 2, p. 127] for a wider class of weights. It
can be formulated as follows.

THEOREM 4.16.1 [Fr50]. Let w be defined by
w(x) =exp(—x"), xeR, (4.16.6)

where m is an even positive integer. Then there exists a positive number ¢
such that, for every n=1, 2,..., the inequality

cnlim

j (1) w(t) drgzj (1) wt) dt (4.16.7)

—cnlim

holds for all polynomials IT of degree at most n.

This inequality, in my global evaluation of Freud’s contributions to
orthogonal polynomials, gets a very high rating indeed. It turned out to be
the basis of a whole new theory of orthogonal polynomials associated with
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Freud-type weight functions. The infinite—finite range inequality (4.16.7)
combined with the extremal property (4.1.1) immediately yields

A w, x) ~ A (w,,, x), (4.16.8)

uniformly for all real x and n=1, 2,.., where w,,(x) = w(x) for |x| < cn'/™
and w,(x) =0 otherwise. Hence estimating Christoffel functions of weights
with unbounded support is reduced to estimating Christoffel functions of
variable weights with compact support. Thus all the machinery of Christof-
fel functions on finite intervals can be brought in to investigate the case of
weight functions on infinite intervals.

Although Freud’s original proof of (4.16.7) was exceedingly complicated,
it was subsequently simplified by several authors. In [Fr50] it was
necessary for Freud to find suitable one-sided approximations for the
weight function w in (4.16.6) when proving (4.16.7), and thus the
assumption that m in (4.16.6) is an even positive integer could not be
relaxed. It did not take long for me to realize that, in fact, one could avoid
using one-sided approximations via a straightforward proof (cf. [Nell,
Lemma 3.2, p. 339]) which leads to significant generalizations of Freud’s
infinite—finite range inequality. On the basis of my results in [Nell, Nel9],
one can easily prove the following, which is closely related to a theorem of
W. C. Bauldry [Baul].

THEOREM 4.16.2 (Nevai). Let w be defined by
w(x)=|x|“exp(—[x|"), xeR, (4.16.9)

where a> —1 and m>0. Let p>0 and be R be given. Then there exist
positive numbers ¢ and d such that, for every n=1, 2,..., the inequality

Iim

[ \T1(1)|7 |11® w(t) di < expl( — dn) J \IT(1)? w(t) di (4.16.10)
[t = cntim !

_plim

holds for all polynomials II of degree at most n. In particular, we have

[imorwwa<2 [* 1wl wi dr (4.16.11)
33 —cntim

Proof of Theorem 4.16.2. Let II be a polynomial of degree at most n. In
what follows, K will denote positive constants independent of » and x.

According to my results on generalized Christoffel functions (Nel9,
Theorem 6.3.28, p. 120], we have

1
|17(x)|ﬂ<1<na+3j (1)) |12 dt, (4.16.12)
—1
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for |x| <1 (cf. Theorem 4.7.6). Thus by an inequality of S. N. Bernstein
[BeS, p. 21],

1
|17(x)|ﬂ<1<(2|x|)2"n~+3f (D)7 114 dr, |x] =1, (4.16.13)
—~1

and applying (4.6.13) with II(n'/™t), we obtain

t/m

|n(x)|P<exp(1<n)n~2"/'"|x|2"f (|7 (19 dt,  |x| =n'", (4.16.14)

1im

from which

1/m

|T(x)|” < exp((K+ 1) n) n=2m |x|2"f ()| w(t) dt,  |x| =n'

7nl/m

(4.16.15)
follows. Hence

[ e 1x1 wix) dx

x| = cnlim

nlim

<exp((K+ 1)n)n=27m [w/ X7+ 2 w(x) dxj ) wio) d,

cn

(4.16.16)

and now the infinitefinite range inequality (4.16.10) is a consequence of
asymptotic formulas on incomplete gamma functions (cf. [BatEr,
Chap. 9]) which guarantee the existence of ¢ such that

oC

exp((K + l)n)n‘z"/’"f |x|?"T® w(x) dx <exp(—dn) (4.16.17)

cnltim
forallneN. ]

After the initial papers [Fr40, Fr50, FrNe2, Nell, Ne9], Freud
produced a large number of publications (cf. [Fr36, Frd4, Frd8, Fr49,
Fr51-Fr54, Fr58, Fr59, Fr69, FrGiRa2]) improving his proof of the
infinitefinite range inequality (4.16.7) and leading to extensive
generalizations for Freud weights given by

w(x)=exp(—Q(x)), xeR. (4.16.18)

His work was continued and complemented by W. C. Bauldry, S. S. Bonan,
A. L. Levin, D.S. Lubinsky, H. N. Mhaskar, E. B. Saff, and R.S. Varga
(cf. [Baul, Bau2, Bonl, MhSal-MhSa35, LevLul, LevLu2, Lu2-Lu4, Lu6,
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SaVal, SaVa2]). In all fairness, it must be pointed out that some of this
work was independent of Freud’s research, such as the investigations of
E. B. Saff and R. S. Varga regarding weighted L, norms of polynomials. A
typical result is the following

THEOREM 4.16.3 [Lu2]. Let w be defined by (4.6.18), where Q is even
and continuous in R, and assume that there exists A>0 such that Q'(x)
exists and xQ'(x) is increasing in {A,0). Let q, be the unique positive root
of the equation qQ'(q)=n, for n sufficiently large. Then, for every
0 <p < o0, there exist positive constants ny and ¢, depending on w and p only,
such that, for every n = n,,

Vp 1ig 4
“ IH(t)w(t)|”dt] ch‘z" IH(t)W(t)l”dtT/ (4.16.19)

71142"
for all polynomials IT of degree at most n.

Applying (4.16.19) with p =2 and using the extremal property (4.1.1), we
again obtain (4.16.8), where w,(x)~w(x) for |x|<cq, and w,(x)=0
otherwise.

The next step towards estimating Christoffel functions of Freud weights
consists of approximating these weights and their reciprocals by
polynomials on suffuciently large intervals. For instance, for the Hermite
weight w(x)=exp(—x?), one can easily construct two polynomials P and
R of degree at most n such that

P(x)<exp(x?), xeR, (4.16.20)
P(x) > const - exp(x?), |x| < Kn'?, (4.16.21)

and
R(x) ~ exp(—x?), |x| < Kn'?, (4.16.22)

with some suitable positive constants. This can be achieved by choosing P
and R to be the nth partial sums of the Taylor expansion of exp(x?) and
exp(—x?), respectively. Since all the Taylor coefficients of exp(x?) are
positive, inequality (4.16.20) follows immediately, whereas (4.16.21) and
(4.16.22) can be proved by examining the remainder terms of the Taylor
series. The same argument works for w(x)=exp(—x™), m > 0 even, as well
(cf. [Fr50]). However, for the weight w(x)=exp(—|x|™), m> 1, or for the
more general w(x) = exp(— Q(x)), taking partial sums of power series does
not seem to be reasonable, since these weights are no longer entire
functions. As Freud noticed (cf. [Fr51]), one can circumvent the problem
caused by the lack of analyticity by first approximating Q by a polynomial
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P* and then taking partial sums of the Taylor expansion of exp(P*) and
exp(— P*), respectively. Freud’s next observation regarding inequalities of
the form (4.16.20)-(4.16.22) was that it is not really necessary to prove
two-sided approximations for all values of x under consideration, when
estimating Christoffel functions. Instead, it is sufficient to find a polynomial
P= P, for all ¢+ with |t| < Kq, such that P(¢)=1/w(¢) and

| P(x)| < const/w(x), x| <Kiq, (4.16.23)

(cf. [Fr58, Lemma 3.2, p. 291; Fr54, Lemma 3.2, p. 161]).

D. S. Lubinsky’s arrival at the scene a few years ago has compietely
changed our perceptions of the possibilities of approximating Freud-type
weights by polynomials. Lubinsky was convinced that, while Freud weights
might not be analytic, they still should be approximable by entire
functions whose Taylor sums could be kept under control. According to
T. Carleman’s theorem in [Ca2], if /' and g > 0 are continuous in R, then
there exists an entire function G such that

[f(x)—G(x)| < g(x), xeR. (4.16.24)

Hence, if w=exp(—(Q(x)), xe R, where Q is continuous, then, for every
e¢>0, there are two entire functions ¢, and G, such that

1—e<w(x)/Gy(x)<1+e  xeR, (4.16.25)

and
l—e<w(x) YGy(x)<1+4¢  xeR. (4.16.26)

Unfortunately, one cannot control the behavior of the Taylor coefficients of
G and G, above. Lubinsky [Lu3] came up with the idea of considering G
defined by

G)=1+4 Y (/g.)*n " wig,)"" (4.16.27)

n=1
for w(x) = exp(—(Q(x)) with ¢,,Q'(q,) = n. This construction turned out to
be the appropriate one for Freud weights, as shown by

THEOREM 4.16.4 [Lu3]. Let w be defined by
w(x)=exp(—Q(x)), xeR, (4.16.28)

where Q is even and continuous in R, and assume that there exist A >0,
B>0and 0<0<1 such that Q" exists in [A, o), Q' is positive in [ A, )
and the inequality —0 < xQ"(x)/Q'(x)< B holds for every x> A. Let q, be
the unique positive root of the equation qQ'(q)=n for n sufficiently large.
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Then G, defined by (4.16.27) is an even entire function satisfying
c SG(x)wlx)< ey xeR, (4.16.29)
where ¢, and c, are positive constants.

Infinite—finite range inequalities and weight approximations such as
(4.16.19) and (4.16.29) enable one to obtain upper bounds for Christoffel
functions associated with Freud weights via Christoffel function estimates
for weights with compact support. In order not to confuse the reader with
too many conditions on the weight function and to et the ideas shine
through, I will only state and prove the following theorem of Freud [Fr58,
Theorem 3.1, p. 292].

THEOREM 4.16.5 [Fr58]. Let w be defined by
w(x)=exp(—2Q(x)), xeR, (4.16.30)

where Q is even and convex in R. Assume that Q'(x) >0 for x>0, and there
are three constants: a>1, b>0 and ¢ >0 such that

a<Q'(2x)/Q'(x) and xQ"(x)/Q'(x)< b, x=zc (4.16.31)

Then there exist two positive constants, A and B, such that
An(w, x)/w(x) < Aq,/n,  |x|<Bg,, (4.16.32)
where q, is the positive root of the equation qQ’(q) =n.

Proof of Theorem 4.16.5. We use the symbol K to denote positive con-
stants independent of all variables. Let P denote the [n/2th partial sum of
the Taylor series of G in (4.16.27). Then obviously

P(x)*w(x)<c,, xeR (4.16.33)

Moreover, examination of the remainder term (cf. [Lu3]) shows that there
is a constant B such that

P(x)* w(x) = const, |x| < Bgq,. (4.16.34)

Applying (4.16.19) (with p=2) and (4.1.1), we obtain

Z,(w, x)<K min jK"" |[I(1)]2 [P(1)/P(x))? w(t)dr.  (4.16.35)
TePrany v Kgp
m(x)=1
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Thus, by (4.16.33) and (4.16.34),

Kqn
A,(w, x)/w(x)<K min j" \[(1)| dt (4.16.36)
o)~ = Kan

for |x| < Bg,. By a change of variable, t'=¢/Kq,, the minimum on the
right-hand side of (4.16.36) becomes the Christoffel function
A2y +1(dL, x/(Kq,)) of the Lebesgue dL measure in [—1,1]. More
precisely, we obtain

An(w, X)/w(x) < Kq,Ap,271(dL, x/(Kq,)), x| <Bg,. (41637)
Since
A (dL, x) < K/n, xeR (4.16.38)
(cf. [Fr31b, p. 103]), the theorem follows from (4.16.37). |

In view of (4.1.1), one is led to believe that lower estimates of Christoffel
functions do not need the application of infinite—finite range inequalitites.
This is indeed the case as long as we are interested in estimates on intervals
such as [— Bq,, Bq,]. It turns out, however, that it is possible to find
lower bounds for Christoffel functions that are valid on the whole real line,
but proving such estimates does require application of infinite—finite range
inequalities. Another difficulty enters the picture when one is looking for
lower bounds. Namely, while it is relatively easy to approximate 1/w by
entire functions with positive Taylor coefficients, it is much more strenuous
to do the same for w, and thus polynomial approximations to w are more
delicate in nature than those to 1/w. It is exactly the latter approximations
which enable one to find lower bounds for Christoffel functions for Freud
weights.

For w given by (4.16.30), it is hopeless to search for polynomials P such
that P2 <w on the whole real line. Nevertheless, under various conditions
on Q, it is possible to show the existence of B> 0 such that, for every n,
there is a polynomial P of degree at most » satisfying

P(x)*~w(x),  |x|<Bq,. (4.16.39)
The construction of such polynomials has been discussed in several papers

by Freud (cf. [Fr54, Fr58]), and Freud’s results were later significantly
improved by A. L. Levin and D. S. Lubinsky in [LevLul, LevLu2].

THEOREM 4.16.6 [Fr54, LevLu2]. Let w=exp(—2Q), where Q is even
and continuous in R. Assume that there exist a>0, b>0 and 0 <0 < 1 such

640/48/1-7
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that Q" is continuous in [a, ov), Q' is positive in [a, 0) and —0<1Q"(¢t)/
Q'(1)< b for te[a, ) while, for some d>1 (d#2,4) tQ"(¢)/Q'(t)—~d as
t — o0. Then there exists a positive constant A such that

A(w, X)/w(x)= Aq,/n (4.16.40)

for every xeR.

Proof of Theorem 4.16.6. This proof consists of three parts. The
symbol K is used to denote appropriate positive constants.

Step 1. Here we show (4.16.40) for |x| < Bg,, where B is a suitable
constant. Let P be a polynomial of degree at most »n such that (4.16.39)
holds (cf. [LevLu2]). Then by (4.1.1)

By,
2,(w, x)> K min f" \T(2)|? w(t) dr
oot R

> Kw(x) min [ |0 |P0)/P() di

MTePp_1 v Bq,
Ix)=1
Bygp,
> Kw(x) min f \TT(1))? db, (4.16.41)
TePy_ — Bqy
(x)=1
and thus
An(w, X)/w(x) = Aq, 42,(dL, x/(Bq,)) (4.16.42)

for |x| < Bg,, there again dL denotes the Lebesgue measure in [ —1, 1].
Now the lower estimate of the Christoffel functions of Legendre
polynomials (cf. [Fr31b, p. 104]) yields (4.16.40) for |x| < Bg,/2.

Step 2. Now we prove (4.16.40) for |x| < Cgq,, where C is an arbitrary
constant. First we show that

lim ¢,/q,.,=0, (4.16.43)

uniformly in n =1, 2,.... We have

log(qn/qmn) = IOg( l/m) - log Ql(qn) + log Q,(qmn)

= log(1/m) + fq"’" 0"(1)/Q'(t) dt. (4.16.44)
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Therefore by (4.16.31),

108(4,/4mn) < log(1/m) +b [ 1/t dt =10g(1/m) = b 108(4,/q )

qn

(4.16.45)
that is,

108(41/qmn) < (1 +b)~ " log(1/m), (4.16.46)

and letting m — oo, (4.16.43) follows. Now we can prove (4.16.40), for
(x| < Cq,, as follows. Since 4,(w) is a decreasing function of n, we have by
Step 1,

An(w, X)/w(x) = A, (W, x)/w(x) = Aq,,,/(nm) (4.16.47)

for |x| < Bg,,, with some B>0. By (4.16.43) for given B>0 and C>0,
there exists m such that Cq,< Bg,,,. Moreover, ¢,,, > ¢, because xQ'(x)
increases. Consequently, (4.16.40) does indeed hold for |x| < (q,.

Step 3. Finally, we note that, for |x| > Dq, with sufficiently large D,
inequality (4.16.40) follows immediately from Step 2 and Theorem 4.16.3
applied with p=o0. |

4.17. Orthogonal Fourier Series, Cesaro
and de la Vallée—Poussin Means, and Bernstein—Markov
and Nikolskii Inequalities with Freud Weights

There are short reasons for this long title: if I devoted an individual
section to each of the topics mentioned in the title, then the length of this
paper would exceed the upper limit of what I would expect from the reader
in terms of undivided attention, curiosity, good will, and patience. Besides,
these subjects, though exceptionally appealing in their own right, were
mostly developed by Freud in connection with his research on weighted
polynomial approximations' (cf. [DiTol, DiTo2, DiLuNeTo, Mh4, MhSa2,
NeTol, NeTo2, Sa]) where they were used as auxiliary tools of the trade
rather than primary subjects of investigation. My intention of limited
discussion is also fueled by my conviction that new results are being
obtained and old ones are being improved at such a pace that every
attempt to provide a reasonably thorough description of the subject is
liable to fail anyway.

The name of the game is characterization of the rate of weighted mean
approximation of functions by polynomials in terms of suitable moduli of
smoothness; the rules of the game were mostly instituted by S.N.
Bernstein; the tools of the game are orthogonal Fourier series, Cesaro and
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de la Vallée-Poussin means, Bernstein-Markov and Nikolskii-type
inequalities with Freud weights, and Christoffel functions; whereas the
principal players are Freud, Z. Ditzian, D.S. Lubinsky, H. N. Mhaskar,
E. B. Saff, V. Totik, and Yours Truly.

In what follows, w 1s 2 Freud weight defined by

w(x)=exp(—Q(x)), xeR, (4.17.1)

where Q satisfies some conditions specified later which essentially guaran-
tee that Q(x) behaves similarly to |x|™ with some m > 1.

The first objective is to construct a proper means of approximation
which is almost as good as the best approximating polynomial. Having had
extensive experience with Cesaro sums of orthogonal Fourier series (cf. Sec-
tion 4.4), Freud chose to select these sums as building blocks.

Let f be a function on the real line such that f*we L. Let S,(w, f)
denote the nth partial sum of the orthogonal Fourier series expansion of f
in {p,(w)} (cf. (3.10)). Let ¢, be the solution of ¢Q'(¢) = n. The conditions
imposed on Q will always ensure that ¢, is uniquely determined for large
enough values of n. For a given x, let I, and E, be defined by

I,=(x—qs,/n, x+q,,/n) and E,=R\/, (4.17.2)

Then, as in Section 4.4, we can write
S, fix)= | f(0) Kilw, x, 1) w(t) di

=f £(0) Kiw, x, t)w(t)dz+f F(0) Ki(w, x, ) w(t) dt, (4.17.3)

and both terms on the right-hand side of (4.17.3) can be estimated in
exactly the same way as it was done in (4.4.4)-(4.4.11). The only difference
1s that, this time, estimates of Christoffel functions discussed and described
in Section 4.16 are used and the bound (4.4.8) for the recursion coefficient
a; 1s replaced by

ae=7e- /1= [ 19 100 1) palw, 1) da(t) <const g, (4174)

which follows immediately from infinite—finite range inequalities such as
Theorem 4.15.3 under suitable conditions on Q.

This argument yields L. boundedness of Cesaro sums which can be
extended to L, boundedness by a standard duality argument. In between
L, and L_ one can apply M. Riesz and G. O. Thorins interpolation
theorem (cf. [Zy2, p.93]). This is how Freud proved the boundedness of
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Cesaro means of orthogonal Fourier series in a number of papers, under
various conditions on w (cf. [Fr40, Frd4l, Fr43, Frd47, Frd48, Fr51-Fr54,
Fr57, Fr62, Fr66, Fr69]). The following is a representative result taken
from [Fr54, Theorem 4.2, p. 166].

THEOREM 4.17.1 [Fr547]. Let w be given by (4.17.1), where

0<Q’()<(1+¢,) Q"(x), c<t<x, (4.17.5)
Q"2t) = (1+¢,) Q"(1), t>c, (4.17.6)

and
Q"(1)/Q'(t)<es, 1>g, (4.17.7)

with some suitable positive constants ¢, c¢,, ¢, and c5. Then, for every
1< p< oo, there exists a constant K independent of n such that

4

{3 suompmmwyaiea " <& {f o worare al

(4.17.8)
for all measurable functions f.
In view of (4.17.8), the de la Vallée-Poussin means
2n
Vaw, )=n"""%  Silw, f) (4.17.9)

k=n+1

provide approximation with rate equivalent to the best one by nth-degree
polynomials.

We already know from Section 4.3 that Lebesgue functions can be
estimated in terms of Christoffel functions, and the former are used to
prove convergence of orthogonal Fourier series under various smoothness
conditions. On the other hand, trigonometric Fourier series of functions of
bounded variation do converge even though the functions might not be
smooth at all (cf. [Zyl, p. 57]). Naturally, if one has a proper equicon-
vergence theorem such as Theorem 4.12.5, then convergence of orthogonal
Fourier series follows from that of trigonometric Fourier series. Otherwise,
one needs to treat and judge each orthogonal system on its own merit.

The soft proof of convergence of trigonometric Fourier series of
functions of bounded variation is using Littlewood’s Tauberian theorem
[Li} (cf. [Zyl, p. 81]), which guarantees convergence of Abel summable
series with O(1/n) terms. What Freud {Fr57, Theorem 3.7, p. 118] noticed
was that this approach was perfectly fit for orthogonal Fourier series
associated with Freud-type weights.
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THEOREM 4.17.2 [Fr57]. Let w be defined by (4.17.1), where Q satisfies
conditions (4.17.5)(4.17.7). Let f be continuous on R and of bounded
variation in every finite interval and let

j w()2 |df (1)] < 0. (4.17.10)

Then
lim sup w(x)"?|f(x)—S,(w, f, x)| =0. (4.17.11)

n—o oo xeR

Sketch of Proof of Theorem 4.17.2. First we express S,(w, f, x) in terms
of the de la Vallée—Poussin means V,(w, f, x) as

2n—1

S,w, i x)=V,w, f,x)— 3 [2—(k/m)]culw, [) palw, x),  (417.12)

k=n+1

where ¢,(w, f) denote the Fourier coefficients of f (cf. (3.11)). Hence

2n—1
1Suw, £, )= VW, )< Y leww, £) pelw, x)I,  (4.17.13)
k=n+1
and by Schwarz’ inequality
w 2n—1
1Sa(w, £ X) = Vouw, LX)1P< Y, lewlw, NI Y palw, x)2, (4.17.14)
k=n—1 k=0

1e.,
1S.(w, £, X) =V, (W, £, X)|* S E,(W, £, 2)* Apu(de, x) 77, (4.17.15)

where E,(w, f,2) denotes the best L,(w) approximation of f on the real
line. Now we can apply Theorem 4.16.6 to estimate the reciprocal of the
Christoffel function on the right-hand side of (4.17.15), and we obtain

w(x) |S,(w, f, x) — V(w, f, x)|* < const(n/q,) E,(w, f,2)?, (4.17.16)
where ¢, is the solution of gQ'(¢q) =n. By Theorem 4.17.1,
lim sup w(x)"? | f(x)—V,(w, f, x)| =0. (4.17.17)

n— o xeR
The next step in the proof is to show
lim (n/q,) E,(w, f,2)*=0. (4.17.18)

Here I will skip the details. I just note that (4.7.18) is proved by first
estimating E,(w, f,2) in terms of E, (w'? f,1) and E,(w'? f, c0), where
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E,(w'?, f, p) denotes the best L, (w'?) approximation of f, and then
estimating E,(w'?, f, 1) and E,(w'/, f, o0), using Theorem 4.17.1 and some
other approximation techniques developed by Freud in a number of papers
such as [FrS0; Fr54; Fr58; Fr57, Appendix, p. 119] (cf. [Mh4, DiTol,
DiTo2, DiLuNeTo]). The latter techniques involve Bohr-type inequalities
and one-sided approximation of Heaviside’s I', function (4.2.3) by
polynomials on the whole real line in a way that resembles inequalities
(4.2.4)-(4.2.5). Now (4.17.11) directly follows from (4.17.16)-(4.17.18). 1

H. N. Mhaskar [Mh3] proved a number of related results regarding
orthogonal Fourier series of functions of bounded variation.

The term “Bernstein-Markov inequalities” refers to estimate of norms of
derivatives of polynomials in one Banach space in terms of norms of
polynomials in possibly another Banach space, and their generalizations to
metric spaces. The classical Markov inequality states

|||, <n? |\,|., (4.17.19)

whereas, according to Bernstein’s inequality,
Il || . <n|IT,|., u(x)=(1—-x*)""2, (4.17.20)

for all algebraic polynomials 17, of degree at most #n, where ||-||. denotes the
maximum norm in [ —1, 17 {cf [BeS5, pp.13-27; Nat, Vol. I, pp. 90, 133,
137]). Bernstein—-Markov inequalities are of invaluable help in characteriz-
ing smoothness of functions in terms of the rate of their best
approximations in one or another space. As a matter of fact, such problems
are usually resolved by arguments that are either identical to or close
imitations of Bernstein’s proofs in [Be5, pp. 28-41].

Freud was very well aware of the need for Bernstein-Markov inequalities
in L,(w) spaces with Freud weights (and so was Szegd (cf. [Sz4,
pp- 845-851]), and such inequalities appeared at an early stage of his
attempts to establish a theory of best approximation on infinite intervals.
His first Bernstein-Markov inequality was in L (w), where w is the Her-
mite weight {Fr36, Theorem 1, p. 1097, and he soon generalized his results
to all L,(w) spaces in [Fr40, Theorem 1, p. 570] as follows.

THEOREM 4.17.3 [Fr40]. Let w be defined by
w(x)=exp(—x?%/2), xeR, (4.17.21)
and let 1 < p< 0o. Then there exists a constants ¢ = c(p) such that
T, wl , <en' | IT,w|, (4.17.22)

JSor all polynomials I1,€ P,, where |-| , denotes the L, norm in R.
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There is no doubt that (4.17.22) is both beautiful and significant.
Nevertheless, Freud committed two unfortunate sins with this theorem.

Sin No. 1. Freud was unaware of W. E. Milne’s paper [ Mi2], where
(T, wY |, < en'? | I, w| (4.17.23)

is proved, which is essentially the same as (4.17.22) with p = oo. The paper
[Mi2] was published in the Transactions of the American Mathematical
Society, which is easily available. Moreover, another paper of W.E.
Miilne—on approximation theorems over infinite intervals [Mil}—was
quoted in D. Jackson’s monograph [Ja, p. 108], in which an entire section
is devoted to such problems (cf. [Ja, Sect. 3.5, pp. 101-10817). I do not deny
my ignorance either, and I thank R. A. Zalik for bringing [Mi2] to my
attention (cf. [Za]). I discovered [Ja, p. 108] only several years after
Freud started to produce his Bernstein-Markov inequalities.

Sin No.2. This refers to the method of proof which Freud later kept as
a model for all of his Bernstein—-Markov inequalities (cf. [Frd44, Fr48, Fr53,
Fr66, Fr69]) and which turned out to be not just overly complicated but
also obstructing the way to proper generalizations. I will briefly elaborate
on the

Sketch of Proof of Theorem 4.17.3
This proof consists of four parts.

Step 1. Freud first proves

1L, IT,wl o, < cn' |1, T,wl o, (4.17.24)

(cf. [Fr36, p.112]) where 1, denotes the characteristic function of the
interval [ —3n'?, 3n'?]. This is verified by repeating Bernstein’s arguments
(cf. [Nat, Vol. I, pp. 90-92] for a beautiful and clear exposition adapted to
the case of Hermite weights, with Hermite polynomials taking over the role
of the trigonometric functions sin(nt).

Step 2. Now (4.17.22), with p = o0, follows from (4.17.24) and Freud’s
infinite—finite range inequality

T, wll . < |1, T, o, (4.17.25)
(cf. [Fr36, p.109] and Theorem 4.16.3).
Step 3. Using (4.17.25), Freud shows
1T, wl, <cen'? | I,wl, (4.17.26)



GEZA FREUD: A CASE STUDY 101

by aplying duality arguments. Here the reasoning goes as follows
(cf. [Fr40, Lemma 3, p. 571]). We have

MT,wily=sup | g(t) IL,() w(r)* dt

lgwle<1*R

= sup | Vw3 g O)I()wt)d,  (4.17.27)

lgwlleo <1 "R

where V,(w?, g) denotes the de la Vallée-Poussin sum (4.17.9) associated
with the Hermite weight w(¢)? = exp( —£°). Integrating by parts, we obtain

f V(w3 g, t) IT.() w(t)? dt

=-j Vi (w g, z)n"(z)w(t)zdt+2j V(w2 g, 1) I(1) tw(1)? dt.
R R
(4.17.28)

Therefore, by (4.17.24), Theorem 4.17.1 (with p= o) and the infinite—finite
range inequality (4.16.11) (with p=1),

[ [ Vw2, g, 1) I, (1 Wit di| < cn' 1 gwll oo 1T, w1, (417.29)
R

and thus (4.17.26) follows from (4.17.27) and (4.17.29).

Step 4. Since we have already proved (4.17.22) for p=1 and p= oo, by
Theorem 4.17.1,

1V, @) wil, <en' [V, (w?, g) wil , <en' [igwl,  (4.17.30)

for p=1 and p=oco. By Riesz and Thorin’s interpolation theorem
(cf. [Zy2, p.93]), (4.17.30) remains valid for all 1< p<oc. Noting
that V,(w? g) acts as a projector on P, (cf (4179)), Freud’s
Bernstein-Markov inequality (4.17.22) follows from (4.17.30). |}

What Freud’s proof of Theorem 4.17.3 missed was that it could and
should have been proved via infinite—finite range inequalities with the well-
known L, version of Bernstein’s inequality (4.17.20) (cf. [Zy2, p.11])
taken as starting point. This I noticed in the mid-seventies and it was first
published in S. S. Bonan’s Ph.D. dissertation [Bonl]. My simplification of
Freud’s proof of (4.17.22) and related inequalities was subsequently
resurrected by A. L. Levin and D. S. Lubinsky in [ LevLul, LevLu2]. I will
introduce the reader to these ideas by providing an outline for a proof
which, as a matter of fact, works for all 0 < p < c0.
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Sketch of the Right Proof of Theorem 4.17.3. The essence of the proof is
that, on every interval [ —c,n', ¢,n?], the weight function w in (4.17.21)
can be approximated by polynomials R, of degree c,n so that

w(x)~R,(x), |x|]<c,n'? (4.17.31)
and
|RL(x)| < csnPw(x),  |x|<e ' (4.17.32)

The construction of such polynomials goes back to Freud [Fr51], who
used partial sums of the Taylor series of w to find R, with the resuired
properties. By the infinite—finite range inequality (4.16.19), there exists a
constant ¢, such that

HT,wl , < c 1,1l ,, (4.17.33)

where 1, denotes the characteristic function of the interval
[—¢,27'n"% ¢,27'n"?]. Here and in what follows ||| , means the pth root
of the integral of the pth power of the absolute value, which is of course not
a norm for 0 < p < 1. By (4.17.31) we obtain

ML wl, <c |LILR ,=c|I1,LUT,R,) — IR, I,
<c |LUT,R) N+ ¢ 11IL, R . (4.17.34)

By the L, version of Bernstein’s inequality, for every 0 < p < o, there is a
constant ¢ such that

I grall pSen 1 _aoy7all, (4.17.35)

for every polynomial r, € P,,, m <const - n, where 1, ,; denotes the charac-
teristic function of [a, b] (cf. [Ar, MaNel, Ne21]). A change of variables
transforms (4.17.35) to

ILarall, <en' |1, (4.17.36)

where 1, denotes the characteristic function of [ —c,;n'?, ¢,n'?]. Now we
can apply (4.17.36) to the first term on the right-hand side of (4.17.34) and
we obtain

T, wi, <en' [1,11,R,|| ,+c 11,11, R, |l . (4.17.37)

Finally, by (4.17.31) and (4.17.32), we can estimate R, and R, in terms of
w, and thus (4.17.22) follows from (4.17.37). ||

For wide classes of Freud weights the latter approach makes
Bernstein—-Markov inequalities much easier to prove, and it also enables
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one to prove such inequalities when Freud’s original method stops
functioning. For instance, Freud’s method cannot handle L,(w) spaces with
O<p<l.

One important class of weights for which Freud did not prove
Bernstein—Markov inequalities is

w(x)=exp(—|x|"), xeR, (4.17.38)

for 0 <m < 2. In recent work of A. L. Levin and D. S. Lubinsky [LevLul,
LevLu2] (1<m<2) and V. Totik and mine [NeTol] (0<m< 1), this
problem has been completely resolved as follows.

THEOREM 4.17.4 [LevLul, NeTol]. Let w be given by (4.17.38) and let
0< p<oo. Then there exists a constant ¢ =c(p, m) such that, for every
polynomial IT, e P,

T, wl , <cn' =™ |H,w|, (4.17.39)
ifm>1,
[ T,wl,<clogn |T,w|, (4.17.40)
ifm=1, and
HLwl,<c | T,wl, (4.1741)
fOo<m<1.

Nikolskii inequalities are natural extensions of Christoffel function
estimates and Bernstein—-Markov inequalities in the sense that they seek a
relationship between metrics in different finite-dimensional metric spaces of
polynomials. The first such inequality was found by S. M. Nikolskii [Ni]
(cf. [Ti, p.229]), and it deals with estimating L, norms of trigonometric
polynomials in terms of their L, norms for p < g (for p> g this is trivially
done by Holder’s inequality). In [Nel9, Chap.6.3] I not only gave a
variety of such results in weighted L,(w) spaces on finite intervals but also
suggested a general method of attacking such problems which should be
applicable in a number of settings including the case of L,(w) spaces on
infinite intervals with Freud weights. In spite of my recommendation to
follow my method, H. N. Mhaskar chose in [Mh1] another approach to
proving Nikolskii inequalities for the above spaces. Then in their joint
paper (MhSa2], Mhaskar and E. B. Saff used my method to extend and
improve results of [Mh1] with simpler proofs (cf. [LevLul]). In the par-
ticular cases of L,(w) with Hermite and Laguerre weights such inequalities
were proved by C. Markett [Mark2] and R. A. Zalik [Za].
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While many of the Nikolskii inequalities proved by Markett, Mhaskar,
Saff, and Zalik are essentially accurate (cf. [Mh4, Theorem 8]), V. Totik
and I in a recent paper [NeTo2] found the sharpest possible Nikolskii
inequalities with Freud weights (4.17.38) for all m > 0. What pleases me the
most is that our results are based on Christoffel function estimates com-
bined with infinite-finite range inequalities (cf. Theorem 4.16.2) and
methods developed in [Nel9, Chap. 6.3]. Therefore it is appropriate that
they be mentioned here, even though Freud himself never dealt with such
inequalities. In what follows ||- | , again means the pth root of the integral
of the pth power of the absolute value.

THEOREM 4.17.5 [NeTo2]. Let m>0, and let w be given by (4.17.38).
For given 0< p, g< o0 and n=1, 2,..., define K,=K,(m, p, q) by

K,=(n/mtr-to if p<q

K,=(n'"Vmda=le)  if p>qg  and m>1

K, = (log n)a—1p if p>q and m=

K,=1 if p>q and m<l1. (41742)

Then there exists a constant ¢ = c(m, p, q) >0 such that
M, wil , < cK, M1, wl, (4.17.43)

for every polynomial I1,€P,. Inequality (4.17.43) is best possible in the
sense that, given m>0, p>0 and q>0, there is a constant ¢*>0 and a
sequence of polynomials {R,}, n=1,2,.., such that

[R,wll ,=c*K,, |R,wll, (4.17.44)
forn=12,..

Hint for Proof of Theorem 4.17.5. Infinite—finite range inequalities such
as Theorem 4.16.2 enable one to reduce (4.17.43) to integrals over finite
intervals of lengths approximately n'”. On such intervals, the weight
function w can be approximated by polynomials; this has been accom-
plished in various papers by authors such as Freud, A.L. Levin, D.S.
Lubinsky, V. Totik, and I (cf. [Fr54, LevLul, LevLu2, NeTol]). Hence
(4.17.43) is further reduced to a Nikolskii inequality in a finite interval with
no weight function, and such inequalities were proved in [Nel9,
p-1147. |

An interesting point concerning the Nikolskii inequality (4.17.43) is that
the order of magnitude of the constant X, is different for p<q and p>g¢q
except for the Hermite case m=2. C.Markett proved in [Mark2,
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Theorem 1, p. 811] that the Laguerre case is similar to the case with the
Hermite weight.

Those familiar with Freud’s research on weighted approximation on
infinite intervals must have observed that I have failed to discuss another
favorite inequality of Freud. I refer to Bohr-type inequalities, which play a
major role in Freud’s Jackson-type theorems such as those given in [Fr50,
Fr51, Fr54, FrNe2]. Since (i) I cannot delay elaborating on Freud’s
conjectures in the next section, and (ii) no claims have been made as to the
completeness of this survey in any respect, even regarding topics where
Christoffel functions are of crucial significance (and this is certainly the
case for Bohr-type inequalities), I conclude this section by stating Harald
Bohr’s inequality (cf. [Bo, FrSzl, Szo6St]) and let the reader turn to
original sources for Freud’s results and methods in this subject.

THEOREM 4.17.6 [Bo]. Let T be defined by

T(t)= f e expli,, 1), (4.17.45)

k= —N
where p, are integers such that p, =>n>0. Let

N

T*(t)= Y cliy) "expli, i), (4.17.46)
k= —-N
antiderivative of T. Then
max [T*(1)| < (n/2) n~ ' max |T(¢)| (4.17.47)
te R teR

and the constant w/2 is sharp.

4.18. Freud Conjectures

In his papers [Fr65, Fr68, Fr71], Freud formulated two conjectures
which subsequently turned out not just to be the tour de force of his
contributions to orthogonal polynomials but also to have the greatest
impact of all of his work in approximation theory.

Conjecture 4.18.1 [Fr65, Fr68]. Let w be defined by
w(x)=exp(—|x|™), xelRR, (4.18.1)
with m > 1, and let a, denote the recursion coefficients in (3.7). Then

lim n=""a,=[rQ2 'm)F2 'm+1)Im+1)"11""  (4.182)

n— o0
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Conjecture 4.18.2 [Fr68, Fr71]. Let w be given by (4.18.1) with m > 1,
and let x,, denote the greatest zero of the orthogonal polynomial p,(w).
Then

lim n=""x,=2[[2 ' 'm) T2 'm+1)(m+1)"'7Y". (4.18.3)
n— 0o

These conjectures and the papers in which they were published have
quite a history, which I will briefly describe here. As a matter of fact,
Fread’s interest in recursion coefficients and greatest zeros arose not
because he had ever been seriously interested in three-term recurrences or
quadratic forms whose norms are related to x,,. What he wanted was the
possibility of creating sequences of polynomials which are capable of
approximating functions in weighted L, spaces on the whole real line with
rate as close to the optimal as possible. At an early stage of the game Freud
decided to put his money on de la Vallée-Poussin (delayed arithmetic)
sums as the means of approximations, and thus he had to manipulate
orthogonal Fourier sums. Alas, according to the Christoffel-Darboux for-
mula (3.13), partial sums of orthogonal Fouriers series contain the recur-
sion coefficient a, as an essential ingredient (cf. (3.8)). Of course, if
supp(da) is compact, then the sequence {a,} is bounded and hence does
not interfere with estimating (C, 1) sums of orthogonal Fouriers series.
However, this is not the case if the support of the measure is no longer
compact. Thus it is essential to be able to estimate the size of a,. As an

initial approach one writes

@y 1= | xXp,_2(dt, x) p,_(da, x) do(x), (4.18.4)
R
and then, by the Gauss-Jacobi quadrature formula (3.4),

a, = 2 xknpn72(da’ xkn) Pn— l(da, xkn) )'kn(da)a (4185)
k=1

where x,, = x;,(da). Hence, if do is symmetric with respect to 0, then
Ay S Xy, (4.18.6)

(cf. [Fr31b, Problem 1.10, p. 497, where it was printed with an error). This
inequality explains why Freud became interested in greatest zeros of
orthogonal polynomials. I add that, for symmetric measures do, supp(da) is
compact if and only if the recursion coefficients form a bounded sequence,
and the latter holds if and only if all the zeros of the corresponding
orthogonal polynomials are uniformly bounded (cf. [Nel9, Lemma 3.3.1,

p. 207).
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In view of the significance that I attach to Freud’s conjectures, the reader
may be interested in the unusual circumstances surrounding their
publication. Chronologically, the first paper is [ Fr68], which Freud wrote
in August 1973 and submitted on December 1, 1973, to the “Proceedings of
a Colloquium on the Constructive Theory of Functions” held at Babes-
Bolyai University in Cluj, Rumania, in September 1973. However, the
organizer of that conference, T.Popoviciu, passed away before the
publication of this book. To Freud’s great surprise, the paper suddenly
appeared in Matematica, Revue dAnalyse Numérique a de Théorie de
I’ Appoximation without previous authorization by him. He was shocked
and infuriated indeed on learning that his paper was published in 1977 in a
journal to which he had no intension of submitting it. (References [7] and
[8], ie, [Fr59] and [Fr56], are given there as “in print,” whereas they
were actually published in 1974; and [9], ie., [Fr65], is listed as “Srudia
Sci. Math. Hungar. (in print).”) Let me add that I had an identical
experience with a paper which I submitted to the same conference
proceedings.

In one respect, these references were right: { Fr65] was indeed submitted
to Studia Scientiarum Mathematicarum Hungaricae in January 1974.
However, when, in August 1974, Freud left Hungary and became a free
agent for a while, he withdrew his paper from that journal (it might have
been rejected, of course; we will perhaps never find this out), and sub-
sequently he submitted it to the Proceedings of the Royal Irish Academy on
November 4, 1974. Why did he choose this journal? I have frequently been
asked this question b